1,671 research outputs found

    The Generic, Incommensurate Transition in the two-dimensional Boson Hubbard Model

    Full text link
    The generic transition in the boson Hubbard model, occurring at an incommensurate chemical potential, is studied in the link-current representation using the recently developed directed geometrical worm algorithm. We find clear evidence for a multi-peak structure in the energy distribution for finite lattices, usually indicative of a first order phase transition. However, this multi-peak structure is shown to disappear in the thermodynamic limit revealing that the true phase transition is second order. These findings cast doubts over the conclusion drawn in a number of previous works considering the relevance of disorder at this transition.Comment: 13 pages, 10 figure

    Spatial and Temporal Variability in Seepage between a Contaminated Aquifer and Tributaries to the Ohio River

    Get PDF
    Because interactions between ground water and tributaries may influence contaminant loading to rivers, we delineated seepage along Little Bayou and Bayou Creeks in McCracken County, Kentucky, during a two-year period. From the Paducah Gaseous Diffusion Plant, on the divide between the creeks, trichloroethene and technetium-99 plumes extend several km toward the Ohio River. Gaining conditions occur where the creeks are incised into coarse sediments in the river\u27s flood plain. Such conditions were marked by upward hydraulic gradients within the bed; maximum specific discharge (q) \u3e 0.24 m d-1; relatively narrow ranges of stream, piezometer, and bed temperatures; relatively cool bed and bank temperatures in summer and early autumn; detections of trace solutes in stream water; and observations of springs, boils, and seeps. Evidence of losing or no-net-discharge conditions included downward or lateral hydraulic gradients; minimal q values (indicative of stream-water flow through the bed); and relatively broad annual ranges of stream and piezometer temperatures. Mixing calculations using δ18O and Cl- support inferences about gaining and losing reaches. Seepage rates and directions changed during dry periods in summer and early autumn and following Ohio River flooding in spring. Discharge of uncontaminated ground water dilutes contaminants in Little Bayou Creek

    Preliminary design study of a baseline MIUS

    Get PDF
    Results of a conceptual design study to establish a baseline design for a modular integrated utility system (MIUS) are presented. The system concept developed a basis for evaluating possible projects to demonstrate an MIUS. For the baseline study, climate conditions for the Washington, D.C., area were used. The baseline design is for a high density apartment complex of 496 dwelling units with a planned full occupancy of approximately 1200 residents. Environmental considerations and regulations for the MIUS installation are discussed. Detailed cost data for the baseline MIUS are given together with those for design and operating variations under climate conditions typified by Las Vegas, Nevada, Houston, Texas, and Minneapolis, Minnesota. In addition, results of an investigation of size variation effects, for 300 and 1000 unit apartment complexes, are presented. Only conceptual aspects of the design are discussed. Results regarding energy savings and costs are intended only as trend information and for use in relative comparisons. Alternate heating, ventilation, and air conditioning concepts are considered in the appendix

    Non-Universality in Random Matrix Ensembles with Soft Level Confinement

    Full text link
    Two families of strongly non-Gaussian random matrix ensembles (RME) are considered. They are statistically equivalent to a one-dimensional plasma of particles interacting logarithmically and confined by the potential that has the long-range behavior V(ϵ)ϵαV(\epsilon)\sim |\epsilon|^{\alpha} (0<α<10<\alpha<1), or V(ϵ)ln2ϵV(\epsilon)\sim \ln^{2}|\epsilon|. The direct Monte Carlo simulations on the effective plasma model shows that the spacing distribution function (SDF) in such RME can deviate from that of the classical Gaussian ensembles. For power-law potentials, this deviation is seen only near the origin ϵ0\epsilon\sim 0, while for the double-logarithmic potential the SDF shows the cross-over from the Wigner-Dyson to Poisson behavior in the bulk of the spectrum.Comment: 4 pages, REVTEX, 3 postscript figures appended, ICTP/9/94/ckw.

    A simple method to assess the oxidative susceptibility of low density lipoproteins

    Get PDF
    BACKGROUND: Oxidative modification of low density lipoproteins (LDL) is recognized as one of the major processes involved in atherogenesis. The in vitro standardized measurement of LDL oxidative susceptibility could thus be of clinical significance. The aim of the present study was to establish a method which would allow the evaluation of oxidative susceptibility of LDL in the general clinical laboratory. RESULTS: LDL was isolated from human plasma by selective precipitation with amphipathic polymers. The ability of LDL to form peroxides was assessed by measuring thiobarbituric acid reactive substances (TBARS) after incubation with Cu(2+) and H(2)O(2). Reaction kinetics showed a three-phase pattern (latency, propagation and decomposition phases) which allowed us to select 150 min as the time point to stop the incubation by cooling and EDTA addition. The mixture Cu(2+)/H(2)O(2) yielded more lipoperoxides than each one on its own at the same time end-point. Induced peroxidation was measured in normal subjects and in type 2 diabetic patients. In the control group, results were 21.7 ± 1.5 nmol MDA/mg LDL protein, while in the diabetic group results were significantly increased (39.0 ± 3.0 nmol MDA/mg LDL protein; p < 0.001). CONCLUSION: a simple and useful method is presented for the routine determination of LDL susceptibility to peroxidation in a clinical laboratory

    Vortex glass transition in a random pinning model

    Full text link
    We study the vortex glass transition in disordered high temperature superconductors using Monte Carlo simulations. We use a random pinning model with strong point-correlated quenched disorder, a net applied magnetic field, longrange vortex interactions, and periodic boundary conditions. From a finite size scaling study of the helicity modulus, the RMS current, and the resistivity, we obtain critical exponents at the phase transition. The new exponents differ substantially from those of the gauge glass model, but are consistent with those of the pure three-dimensional XY model.Comment: 7 pages RevTeX, 4 eps figure

    Current--Voltage Characteristics of Two--Dimensional Vortex Glass Models

    Full text link
    We have performed Monte Carlo simulations to determine current--voltage characteristics of two different vortex glass models in two dimensions. The results confirm the conclusions of earlier studies that there is a transition at T=0T=0. In addition we find that, as T0T\to 0, the linear resistance vanishes exponentially, and the current scale, JnlJ_{nl}, where non-linearities appear in the II--VV characteristics varies roughly as T3T^3, quite different from the predictions of conventional flux creep theory, JnlTJ_{nl} \sim T. The results for the two models agree quite well with each other, and also agree fairly well with recent experiments on very thin films of YBCO.Comment: 18 pages with 10 figures available upon request from R. A. Hyman at [email protected]. The only change in the new version is the deletion of an unimportant comment.IUCM94-01

    A Memetic Analysis of a Phrase by Beethoven: Calvinian Perspectives on Similarity and Lexicon-Abstraction

    Get PDF
    This article discusses some general issues arising from the study of similarity in music, both human-conducted and computer-aided, and then progresses to a consideration of similarity relationships between patterns in a phrase by Beethoven, from the first movement of the Piano Sonata in A flat major op. 110 (1821), and various potential memetic precursors. This analysis is followed by a consideration of how the kinds of similarity identified in the Beethoven phrase might be understood in psychological/conceptual and then neurobiological terms, the latter by means of William Calvin’s Hexagonal Cloning Theory. This theory offers a mechanism for the operation of David Cope’s concept of the lexicon, conceived here as a museme allele-class. I conclude by attempting to correlate and map the various spaces within which memetic replication occurs

    Phase diagrams of the 2D t-t'-U Hubbard model from an extended mean field method

    Full text link
    It is well-known from unrestricted Hartree-Fock computations that the 2D Hubbard model does not have homogeneous mean field states in significant regions of parameter space away from half filling. This is incompatible with standard mean field theory. We present a simple extension of the mean field method that avoids this problem. As in standard mean field theory, we restrict Hartree-Fock theory to simple translation invariant states describing antiferromagnetism (AF), ferromagnetism (F) and paramagnetism (P), but we use an improved method to implement the doping constraint allowing us to detect when a phase separated state is energetically preferred, e.g. AF and F coexisting at the same time. We find that such mixed phases occur in significant parts of the phase diagrams, making them much richer than the ones from standard mean field theory. Our results for the 2D t-t'-U Hubbard model demonstrate the importance of band structure effects.Comment: 6 pages, 5 figure
    corecore