6,889 research outputs found

    Supersymmetric Quantum Mechanics for String-Bits

    Get PDF
    We develop possible versions of supersymmetric single particle quantum mechanics, with application to superstring-bit models in view. We focus principally on space dimensions d=1,2,4,8d=1,2,4,8, the transverse dimensionalities of superstring in 3,4,6,103,4,6,10 space-time dimensions. These are the cases for which ``classical'' superstring makes sense, and also the values of dd for which Hooke's force law is compatible with the simplest superparticle dynamics. The basic question we address is: When is it possible to replace such harmonic force laws with more general ones, including forces which vanish at large distances? This is an important question because forces between string-bits that do not fall off with distance will almost certainly destroy cluster decomposition. We show that the answer is affirmative for d=1,2d=1,2, negative for d=8d=8, and so far inconclusive for d=4d=4.Comment: 17 pages, Late

    Universality and Clustering in 1+1 Dimensional Superstring-Bit Models

    Get PDF
    We construct a 1+1 dimensional superstring-bit model for D=3 Type IIB superstring. This low dimension model escapes the problems encountered in higher dimension models: (1) It possesses full Galilean supersymmetry; (2) For noninteracting polymers of bits, the exactly soluble linear superpotential describing bit interactions is in a large universality class of superpotentials which includes ones bounded at spatial infinity; (3) The latter are used to construct a superstring-bit model with the clustering properties needed to define an SS-matrix for closed polymers of superstring-bits.Comment: 11 pages, Latex documen

    Generalized Paraxial Ray Trace Procedure Derived from Geodesic Deviation

    Full text link
    Paraxial ray tracing procedures have become widely accepted techniques for acoustic models in seismology and underwater acoustics. To date a generic form of these procedures including fluid motion and time dependence has not appeared in the literature. A detailed investigation of the characteristic curves of the equations of hydrodynamics allows for an immediate generalization of the procedure to be extracted from the equation form geodesic deviation. The general paraxial ray trace equations serve as an ideal supplement to ordinary ray tracing in predicting the deformation of acoustic beams in random environments. The general procedure is derived in terms of affine parameterization and in a coordinate time parameterization ideal for application to physical acoustic ray propagation. The formalism is applied to layered media, where the deviation equation reduces to a second order differential equation for a single field with a general solution in terms of a depth integral along the ray path. Some features are illustrated through special cases which lead to exact solutions in terms of either ordinary or special functions.Comment: Original; 40 pages (double spaced), 1 figure Replaced version; 36 pages single spaced, 7 figures. Expanded content; Complete derivation of the equations from the equations of hydrodynamics, introduction of an auxiliary basis for three dimensional wave-front modeling. Typos in text and equations correcte

    String Bit Models for Superstring

    Get PDF
    We extend the model of string as a polymer of string bits to the case of superstring. We mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string we work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D2)+1(D-2)+1 dimensional space-time. This means that Poincar\'e invariance is reduced to the Galilei subgroup in D2D-2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in DD dimensional space-time enjoying the full N=2N=2 Poincar\'e supersymmetric dynamics of type II-B superstring.Comment: 43 pages, phyzzx require

    Primera excursión de algunos osciladores no-lineales simples

    Get PDF
    Se utiliza un mdtodo de elementos finitos de PetrovGalerkin para determinar la probabilidad de failo y los momentos de tiempo ordinarios en problemas de primera excursión de osciladores simples de un grado de libertad. No se establecen restricciones en la estrecha banda de la respuesta, amplitud del campo o magnitud de la no linealidad. La versatilidad del método se ilustra con ejemplos clásicos de osciladores de VanderPol y Duffuig para varias anchuras de la región de seguridad, no linealidades y coeficientes de amortiguamiento. La exactitud y eficiancia computacional de la solución se demuestra por comparación de los resultados de elementos finitos con simulaciones de Monte Carlo.Peer Reviewe

    Easy on that trigger dad: a study of long term family photo retrieval

    Get PDF
    We examine the effects of new technologies for digital photography on people's longer term storage and access to collections of personal photos. We report an empirical study of parents' ability to retrieve photos related to salient family events from more than a year ago. Performance was relatively poor with people failing to find almost 40% of pictures. We analyze participants' organizational and access strategies to identify reasons for this poor performance. Possible reasons for retrieval failure include: storing too many pictures, rudimentary organization, use of multiple storage systems, failure to maintain collections and participants' false beliefs about their ability to access photos. We conclude by exploring the technical and theoretical implications of these findings

    Dirichlet Branes on Orientifolds

    Get PDF
    We consider the classification of BPS and non-BPS D-branes in orientifold models. In particular we construct all stable BPS and non-BPS D-branes in the Gimon-Polchinski (GP) and Dabholkar-Park-Blum-Zaffaroni (DPBZ) orientifolds and determine their stability regions in moduli space as well as decay products. We find several kinds of integrally and torsion charged non-BPS D-branes. Certain of these are found to have projective representations of the orientifold ×\times GSO group on the Chan-Paton factors. It is found that the GP orientifold is not described by equivariant orthogonal K-theory as may have been at first expected. Instead a twisted version of this K-theory is expected to be relevant.Comment: 33 pages, LaTeX, 5 figures. v2 typos corrected, references included, (4,s)-branes re-examine

    Effective electronic response of a system of metallic cylinders

    Get PDF
    The electronic response of a composite consisting of aligned metallic cylinders in vacuum is investigated, on the basis of photonic band structure calculations. The effective long-wavelength dielectric response function is computed, as a function of the filling fraction. A spectral representation of the effective response is considered, and the surface mode strengths and positions are analyzed. The range of validity of a Maxwell-Garnett-like approach is discussed, and the impact of our results on absorption spectra and electron energy-loss phenomena is addressed.Comment: 15 pages, 6 figures, to appear in Phys. Rev.

    A Review of Symmetry Algebras of Quantum Matrix Models in the Large-N Limit

    Full text link
    This is a review article in which we will introduce, in a unifying fashion and with more intermediate steps in some difficult calculations, two infinite-dimensional Lie algebras of quantum matrix models, one for the open string sector and one for the closed string sector. Physical observables of quantum matrix models in the large-N limit can be expressed as elements of these Lie algebras. We will see that both algebras arise as quotient algebras of a larger Lie algebra. We will also discuss some properties of these Lie algebras not published elsewhere yet, and briefly review their relationship with well-known algebras like the Cuntz algebra, the Witt algebra and the Virasoro algebra. We will also review how Yang--Mills theory, various low energy effective models of string theory, quantum gravity, string-bit models, and quantum spin chain models can be formulated as quantum matrix models. Studying these algebras thus help us understand the common symmetry of these physical systems.Comment: 77 pages, 21 eps figures, 1 table, LaTeX2.09; an invited review articl
    corecore