154 research outputs found

    SO(2N) and SU(N) gauge theories in 2+1 dimensions

    Full text link
    We perform an exploratory investigation of how rapidly the physics of SO(2N) gauge theories approaches its N=oo limit. This question has recently become topical because SO(2N) gauge theories are orbifold equivalent to SU(N) gauge theories, but do not have a finite chemical potential sign problem. We consider only the pure gauge theory and, because of the inconvenient location of the lattice strong-to-weak coupling 'bulk' transition in 3+1 dimensions, we largely confine our numerical calculations to 2+1 dimensions. We discuss analytic expectations in both D=2+1 and D=3+1, show that the SO(6) and SU(4) spectra do indeed appear to be the same, and show that a number of mass ratios do indeed appear to agree in the large-N limit. In particular SO(6) and SU(3) gauge theories are quite similar except for the values of the string tension and coupling, both of which differences can be readily understood.Comment: 27 pages, 9 figure

    Casimir scaling of domain wall tensions in the deconfined phase of D=3+1 SU(N) gauge theories

    Full text link
    We perform lattice calculations of the spatial 't Hooft k-string tensions in the deconfined phase of SU(N) gauge theories for N=2,3,4,6. These equal (up to a factor of T) the surface tensions of the domain walls between the corresponding (Euclidean) deconfined phases. For T much larger than Tc our results match on to the known perturbative result, which exhibits Casimir Scaling, being proportional to k(N-k). At lower T the coupling becomes stronger and, not surprisingly, our calculations show large deviations from the perturbative T-dependence. Despite this we find that the behaviour proportional to k(N-k) persists very accurately down to temperatures very close to Tc. Thus the Casimir Scaling of the 't Hooft tension appears to be a `universal' feature that is more general than its appearance in the low order high-T perturbative calculation. We observe the `wetting' of these k-walls at T around Tc and the (almost inevitable) `perfect wetting' of the k=N/2 domain wall. Our calculations show that as T tends to Tc the magnitude of the spatial `t Hooft string tension decreases rapidly. This suggests the existence of a (would-be) 't Hooft string condensation transition at some temperature which is close to but below Tc. We speculate on the `dual' relationship between this and the (would-be) confining string condensation at the Hagedorn temperature that is close to but above Tc.Comment: 40 pages, 14 figure

    An ideal toy model for confining, walking and conformal gauge theories: the O(3) sigma model with theta-term

    Get PDF
    A toy model is proposed for four dimensional non-abelian gauge theories coupled to a large number of fermionic degrees of freedom. As the number of flavors is varied the gauge theory may be confining, walking or conformal. The toy model mimicking this feature is the two dimensional O(3) sigma model with a theta-term. For all theta the model is asymptotically free. For small theta the model is confining in the infra red, for theta = pi the model has a non-trivial infra red fixed point and consequently for theta slightly below pi the coupling walks. The first step in investigating the notoriously difficult systematic effects of the gauge theory in the toy model is to establish non-perturbatively that the theta parameter is actually a relevant coupling. This is done by showing that there exist quantities that are entirely given by the total topological charge and are well defined in the continuum limit and are non-zero, despite the fact that the topological susceptibility is divergent. More precisely it is established that the differences of connected correlation functions of the topological charge (the cumulants) are finite and non-zero and consequently there is only a single divergent parameter in Z(theta) but otherwise it is finite. This divergent constant can be removed by an appropriate counter term rendering the theory completely finite even at theta > 0.Comment: 9 pages, 2 figures, minor modification, references adde

    Quasiperiodic oscillations in a strong gravitational field around neutron stars testing braneworld models

    Full text link
    The strong gravitational field of neutron stars in the brany universe could be described by spherically symmetric solutions with a metric in the exterior to the brany stars being of the Reissner-Nordstrom type containing a brany tidal charge representing the tidal effect of the bulk spacetime onto the star structure. We investigate the role of the tidal charge in orbital models of high-frequency quasiperiodic oscillations (QPOs) observed in neutron star binary systems. We focus on the relativistic precession model. We give the radial profiles of frequencies of the Keplerian (vertical) and radial epicyclic oscillations. We show how the standard relativistic precession model modified by the tidal charge fits the observational data, giving estimates of the allowed values of the tidal charge and the brane tension based on the processes going in the vicinity of neutron stars. We compare the strong field regime restrictions with those given in the weak-field limit of solar system experiments.Comment: 26 pages, 6 figure

    Quantum kink and its excitations

    Full text link
    We show how detailed properties of a kink in quantum field theory can be extracted from field correlation functions. This makes it possible to study quantum kinks in a fully non-perturbative way using Monte Carlo simulations. We demonstrate this by calculating the kink mass as well as the spectrum and approximate wave functions of its excitations. This way of measuring the kink mass has clear advantages over the existing approaches based on creation and annihilation operators or the kink free energy. Our methods are straightforward to generalise to more realistic theories and other defect types.Comment: 21 pages, 11 figures, v2: typos corrected, references adde

    Forced oscillations in a hydrodynamical accretion disk and QPOs

    Full text link
    This is the second of a series of papers aimed to look for an explanation on the generation of high frequency quasi-periodic oscillations (QPOs) in accretion disks around neutron star, black hole, and white dwarf binaries. The model is inspired by the general idea of a resonance mechanism in the accretion disk oscillations as was already pointed out by Abramowicz & Klu{\'z}niak (\cite{Abramowicz2001}). In a first paper (P\'etri \cite{Petri2005a}, paper I), we showed that a rotating misaligned magnetic field of a neutron star gives rise to some resonances close to the inner edge of the accretion disk. In this second paper, we suggest that this process does also exist for an asymmetry in the gravitational potential of the compact object. We prove that the same physics applies, at least in the linear stage of the response to the disturbance in the system. This kind of asymmetry is well suited for neutron stars or white dwarfs possessing an inhomogeneous interior allowing for a deviation from a perfectly spherically symmetric gravitational field. We show by a linear analysis that the disk initially in a cylindrically symmetric stationary state is subject to three kinds of resonances: a corotation resonance, a Lindblad resonance due to a driven force and a parametric sonance. The highest kHz QPOs are then interpreted as the orbital frequency of the disk at locations where the response to the resonances are maximal. It is also found that strong gravity is not required to excite the resonances.Comment: Accepte

    Holographic Conformal Window - A Bottom Up Approach

    Full text link
    We propose a five-dimensional framework for modeling the background geometry associated to ordinary Yang-Mills (YM) as well as to nonsupersymmetric gauge theories possessing an infrared fixed point with fermions in various representations of the underlying gauge group. The model is based on the improved holographic approach, on the string theory side, and on the conjectured all-orders beta function for the gauge theory one. We first analyze the YM gauge theory. We then investigate the effects of adding flavors and show that, in the holographic description of the conformal window, the geometry becomes AdS when approaching the ultraviolet and the infrared regimes. As the number of flavors increases within the conformal window we observe that the geometry becomes more and more of AdS type over the entire energy range.Comment: 20 Pages, 3 Figures. v2: references adde

    Monitoring the Dusty S-Cluster Object (DSO/G2) on its Orbit towards the Galactic Center Black Hole

    Full text link
    We analyse and report in detail new near-infrared (1.45 - 2.45 microns) observations of the Dusty S-cluster Object (DSO/G2) during its approach to the black hole at the center of the Galaxy that were carried out with ESO VLT/SINFONI between February and September 2014. Before May 2014 we detect spatially compact Br-gamma and Pa-alpha line emission from the DSO at about 40mas east of SgrA*. The velocity of the source, measured from the red-shifted emission, is 2700+-60 km/s. No blue-shifted emission above the noise level is detected at the position of SgrA* or upstream the presumed orbit. After May we find spatially compact Br-gamma blue-shifted line emission from the DSO at about 30mas west of SgrA* at a velocity of -3320+-60 km/s and no indication for significant red-shifted emission. We do not detect any significant extension of velocity gradient across the source. We find a Br-gamma-line full width at half maximum of 50+-10 Angstroem before and 15+-10 Angstroem after the peribothron transit, i.e. no significant line broadening with respect to last year is observed. Br-gamma line maps show that the bulk of the line emission originates from a region of less than 20mas diameter. This is consistent with a very compact source on an elliptical orbit with a peribothron time passage in 2014.39+-0.14. For the moment, the flaring activity of the black hole in the near-infrared regime has not shown any statistically significant increment. Increased accretion activity of SgrA* may still be upcoming. We discuss details of a source model according to which the DSO is rather a young accreting star than a coreless gas and dust cloud.Comment: 32 pages - 3 tables - 17 figure - accepted by Ap
    • …
    corecore