144 research outputs found

    Evidence for a Self-Bound Liquid State and the Commensurate-Incommensurate Coexistence in 2D 3^3He on Graphite

    Full text link
    We made heat-capacity measurements of two dimensional (2D) 3^3He adsorbed on graphite preplated with monolayer 4^4He in a wide temperature range (0.1 T\leq T \leq 80 mK) at densities higher than that for the 4/7 phase (= 6.8 nm2^{-2}). In the density range of 6.8 ρ\leq \rho \leq 8.1 nm2^{-2}, the 4/7 phase is stable against additional 3^3He atoms up to 20% and they are promoted into the third layer. We found evidence that such promoted atoms form a self-bound 2D Fermi liquid with an approximate density of 1 nm2^{-2} from the measured density dependence of the γ\gamma-coefficient of heat capacity. We also show evidence for the first-order transition between the commensurate 4/7 phase and the ferromagnetic incommensurate phase in the second layer in the density range of 8.1 ρ\leq \rho \leq 9.5 nm2^{-2}.Comment: 6 pages, 4 figure

    Posture of the arm when grasping spheres to place them elsewhere

    Get PDF
    Despite the infinitely many ways to grasp a spherical object, regularities have been observed in the posture of the arm and the grasp orientation. In the present study, we set out to determine the factors that predict the grasp orientation and the final joint angles of reach-tograsp movements. Subjects made reach-to-grasp movements toward a sphere to pick it up and place it at an indicated location. We varied the position of the sphere and the starting and placing positions. Multiple regression analysis showed that the sphere's azimuth from the subject was the best predictor of grasp orientation, although there were also smaller but reliable contributions of distance, starting position, and perhaps even placing position. The sphere's initial distance from the subject was the best predictor of the final elbow angle and shoulder elevation. A combination of the sphere's azimuth and distance from the subject was required to predict shoulder angle, trunkhead rotation, and lateral head position. The starting position best predicted the final wrist angle and sagittal head position. We conclude that the final posture of the arm when grasping a sphere to place it elsewhere is determined to a larger extend by the initial position of the object than by effects of starting and placing position. © 2010 Springer-Verlag

    Comparative genomics of the pathogenic ciliate Ichthyophthirius multifiliis, its free-living relatives and a host species provide insights into adoption of a parasitic lifestyle and prospects for disease control

    Get PDF
    BACKGROUND: Ichthyophthirius multifiliis, commonly known as Ich, is a highly pathogenic ciliate responsible for 'white spot', a disease causing significant economic losses to the global aquaculture industry. Options for disease control are extremely limited, and Ich's obligate parasitic lifestyle makes experimental studies challenging. Unlike most well-studied protozoan parasites, Ich belongs to a phylum composed primarily of free-living members. Indeed, it is closely related to the model organism Tetrahymena thermophila. Genomic studies represent a promising strategy to reduce the impact of this disease and to understand the evolutionary transition to parasitism. RESULTS: We report the sequencing, assembly and annotation of the Ich macronuclear genome. Compared with its free-living relative T. thermophila, the Ich genome is reduced approximately two-fold in length and gene density and three-fold in gene content. We analyzed in detail several gene classes with diverse functions in behavior, cellular function and host immunogenicity, including protein kinases, membrane transporters, proteases, surface antigens and cytoskeletal components and regulators. We also mapped by orthology Ich's metabolic pathways in comparison with other ciliates and a potential host organism, the zebrafish Danio rerio. CONCLUSIONS: Knowledge of the complete protein-coding and metabolic potential of Ich opens avenues for rational testing of therapeutic drugs that target functions essential to this parasite but not to its fish hosts. Also, a catalog of surface protein-encoding genes will facilitate development of more effective vaccines. The potential to use T. thermophila as a surrogate model offers promise toward controlling 'white spot' disease and understanding the adaptation to a parasitic lifestyle

    Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa

    Get PDF
    Pseudomonas aeruginosa is an antibiotic-refractory pathogen with a large genome and extensive genotypic diversity. Historically, P. aeruginosa has been a major model system for understanding the molecular mechanisms underlying type I clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR-Cas)-based bacterial immune system function. However, little information on the phylogenetic distribution and potential role of these CRISPR-Cas systems in molding the P. aeruginosa accessory genome and antibiotic resistance elements is known. Computational approaches were used to identify and characterize CRISPR-Cas systems within 672 genomes, and in the process, we identified a previously unreported and putatively mobile type I-C P. aeruginosa CRISPR-Cas system. Furthermore, genomes harboring noninhibited type I-F and I-E CRISPR-Cas systems were on average ~300 kb smaller than those without a CRISPR-Cas system. In silico analysis demonstrated that the accessory genome (n = 22,036 genes) harbored the majority of identified CRISPR-Cas targets. We also assembled a global spacer library that aided the identification of difficult-to-characterize mobile genetic elements within next-generation sequencing (NGS) data and allowed CRISPR typing of a majority of P. aeruginosa strains. In summary, our analysis demonstrated that CRISPR-Cas systems play an important role in shaping the accessory genomes of globally distributed P. aeruginosa isolates

    Global Research Priorities to Better Understand the Burden of Iatrogenic Harm in Primary Care: An International Delphi Exercise

    Get PDF
    There is a need to identify and reach agreement on key foci for patient safety research in primary care contexts and understand how these priorities differ between low-, middle-, and high-income settings. We conducted a modified Delphi exercise, which was distributed to an international panel of experts in patient safety and primary care. Family practice and pharmacy were considered the main contexts on which to focus attention in order to advance patient safety in primary care across all income categories. Other clinical contexts prioritised included community midwifery and nursing in low-income countries and care homes in high-income countries. The sources of patient safety incidents requiring further study across all economic settings that were identified were communication between health care professionals and with patients, teamwork within the health care team, laboratory and diagnostic imaging investigations, issues relating to data management, transitions between different care settings, and chart/patient record com- pleteness. This work lays the foundation for a range of research initiatives that aim to promote a more comprehensive appreciation of the burden of unsafe primary care, develop understanding of the main areas of risk, and identify interventions that can enhance the safety of primary care provision internationall

    Dopamine Inhibits Mitochondrial Motility in Hippocampal Neurons

    Get PDF
    The trafficking of mitochondria within neurons is a highly regulated process. In an earlier study, we found that serotonin (5-HT), acting through the 5-HT1A receptor subtype, promotes axonal transport of mitochondria in cultured hippocampal neurons by increasing Akt activity, and consequently decreasing glycogen synthase kinase (GSK3beta) activity. This finding suggests a critical role for neuromodulators in the regulation of mitochondrial trafficking in neurons. In the present study, we investigate the effects of a second important neuromodulator, dopamine, on mitochondrial transport in hippocampal neurons.Here, we show that dopamine, like 5-HT, regulates mitochondrial motility in cultured hippocampal neurons through the Akt-GSK3beta signaling cascade. But, in contrast to the stimulatory effect of 5-HT, administration of exogenous dopamine or bromocriptine, a dopamine 2 receptor (D2R) agonist, caused an inhibition of mitochondrial movement. Moreover, pretreatment with bromocriptine blocked the stimulatory effect of 5-HT on mitochondrial movement. Conversely, in cells pretreated with 5-HT, no further increases in movement were observed after administration of haloperidol, a D2R antagonist. In contrast to the effect of the D2R agonist, addition of SKF38393, a dopamine 1 receptor (D1R) agonist, promoted mitochondrial transport, indicating that the inhibitory effect of dopamine was actually the net summation of opposing influences of the two receptor subtypes. The most pronounced effect of dopamine signals was on mitochondria that were already moving directionally. Western blot analysis revealed that treatment with either a D2R agonist or a D1R antagonist decreased Akt activity, and conversely, treatment with either a D2R antagonist or a D1R agonist increased Akt activity.Our observations strongly suggest a role for both dopamine and 5-HT in regulating mitochondrial movement, and indicate that the integrated effects of these two neuromodulators may be important in determining the distribution of energy sources in neurons

    Glycans in Sera of Amyotrophic Lateral Sclerosis Patients and Their Role in Killing Neuronal Cells

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by degeneration of upper and lower motor neurons. To date, glycosylation patterns of glycoproteins in fluids of ALS patients have not been described. Moreover, the aberrant glycosylation related to the pathogenesis of other neurodegenerative diseases encouraged us to explore the glycome of ALS patient sera. We found high levels of sialylated glycans and low levels of core fucosylated glycans in serum-derived N-glycans of patients with ALS, compared to healthy volunteer sera. Based on these results, we analyzed the IgG Fc N297-glycans, as IgG are major serum glycoproteins affected by sialylation or core fucosylation and are found in the motor cortex of ALS patients. The analyses revealed a distinct glycan, A2BG2, in IgG derived from ALS patient sera (ALS-IgG). This glycan increases the affinity of IgG to CD16 on effector cells, consequently enhancing Antibody-Dependent Cellular Cytotoxicity (ADCC). Therefore, we explore whether the Fc-N297-glycans of IgG may be involved in ALS disease. Immunostaining of brain and spinal cord tissues revealed over-expression of CD16 and co-localization of intact ALS-IgG with CD16 and in brain with activated microglia of G93A-SOD1 mice. Intact ALS-IgG enhanced effector cell activation and ADCC reaction in comparison to sugar-depleted or control IgG. ALS-IgG were localized in the synapse between brain microglia and neurons of G93A-SOD1 mice, manifesting a promising in vivo ADCC reaction. Therefore, glycans of ALS-IgG may serve as a biomarker for the disease and may be involved in neuronal damage

    Activation of Akt by the Bacterial Inositol Phosphatase, SopB, is Wortmannin Insensitive

    Get PDF
    Salmonella enterica uses effector proteins translocated by a Type III Secretion System to invade epithelial cells. One of the invasion-associated effectors, SopB, is an inositol phosphatase that mediates sustained activation of the pro-survival kinase Akt in infected cells. Canonical activation of Akt involves membrane translocation and phosphorylation and is dependent on phosphatidyl inositide 3 kinase (PI3K). Here we have investigated these two distinct processes in Salmonella infected HeLa cells. Firstly, we found that SopB-dependent membrane translocation and phosphorylation of Akt are insensitive to the PI3K inhibitor wortmannin. Similarly, depletion of the PI3K regulatory subunits p85α and p85ß by RNAi had no inhibitory effect on SopB-dependent Akt phosphorylation. Nevertheless, SopB-dependent phosphorylation does depend on the Akt kinases, PDK1 and rictor-mTOR. Membrane translocation assays revealed a dependence on SopB for Akt recruitment to Salmonella ruffles and suggest that this is mediated by phosphoinositide (3,4) P2 rather than phosphoinositide (3,4,5) P3. Altogether these data demonstrate that Salmonella activates Akt via a wortmannin insensitive mechanism that is likely a class I PI3K-independent process that incorporates some essential elements of the canonical pathway

    Treatment of Rat Spinal Cord Injury with the Neurotrophic Factor Albumin-Oleic Acid: Translational Application for Paralysis, Spasticity and Pain

    Get PDF
    Sensorimotor dysfunction following incomplete spinal cord injury (iSCI) is often characterized by the debilitating symptoms of paralysis, spasticity and pain, which require treatment with novel pleiotropic pharmacological agents. Previous in vitro studies suggest that Albumin (Alb) and Oleic Acid (OA) may play a role together as an endogenous neurotrophic factor. Although Alb can promote basic recovery of motor function after iSCI, the therapeutic effect of OA or Alb-OA on a known translational measure of SCI associated with symptoms of spasticity and change in nociception has not been studied. Following T9 spinal contusion injury in Wistar rats, intrathecal treatment with: i) Saline, ii) Alb (0.4 nanomoles), iii) OA (80 nanomoles), iv) Alb-Elaidic acid (0.4/80 nanomoles), or v) Alb-OA (0.4/80 nanomoles) were evaluated on basic motor function, temporal summation of noxious reflex activity, and with a new test of descending modulation of spinal activity below the SCI up to one month after injury. Albumin, OA and Alb-OA treatment inhibited nociceptive Tibialis Anterior (TA) reflex activity. Moreover Alb-OA synergistically promoted early recovery of locomotor activity to 50±10% of control and promoted de novo phasic descending inhibition of TA noxious reflex activity to 47±5% following non-invasive electrical conditioning stimulation applied above the iSCI. Spinal L4–L5 immunohistochemistry demonstrated a unique increase in serotonin fibre innervation up to 4.2±1.1 and 2.3±0.3 fold within the dorsal and ventral horn respectively with Alb-OA treatment when compared to uninjured tissue, in addition to a reduction in NR1 NMDA receptor phosphorylation and microglia reactivity. Early recovery of voluntary motor function accompanied with tonic and de novo phasic descending inhibition of nociceptive TA flexor reflex activity following Alb-OA treatment, mediated via known endogenous spinal mechanisms of action, suggests a clinical application of this novel neurotrophic factor for the treatment of paralysis, spasticity and pain
    corecore