110 research outputs found

    Copy number variation in dairy cattle using next-generation sequencing.

    Get PDF
    Gene copy number variants (CNV) have been shown to be associated with several production traits in dairy cattle; however, the detection and validation of CNVs in crossbred cattle is currently lacking. In order to provide a basis for future association studies, we sought to identify CNV regions (CNVRs) within the Girolando composite breed resulting from a mating of the Holstein (taurine) and Gir (indicine) breeds. A read depth method was performed using CNVnator software on NGS data from two Girolando, two Gir and ten Holstein bulls. The individual CNVs were merged into CNVRs based on genomic regions overlapping by at least 1 bp. In total, we identified a composite of 1,286 CNVRs (520 deletions, 255 duplications, 511 mixed) on the genomes of all samples. We observed 34 CNVRs (nine deletions, 25 mixed) in common (overlapping > 50%) only between Girolando and Holstein and 181 CNVRs (20 deletions, 21 duplications,140 mixed) only in Girolando and Gir, suggesting parent-of-origin inheritance from Holstein and Gir cattle, respectively. One of these Holstein-specific CNVRs intersected with the interleukin 6 family cytokine (LIF) gene which is linked to fat production and fertility traits in Holstein. Genes related to disease resistance (e.g. the CD4 gene) also coincided with CNVRs present only in Gir and Girolando cattle suggesting an indicine origin for the CNV. These results showed evidence of specific CNVRs shared by Girolando and purebred breeds which may be targeted for future selective breeding.PAG 2018. P0490. Na publicação: Adhemar Zerlotini, Marcos Vinicius B. da Silva

    Development of polymorphic markers in the immune gene complex loci of cattle

    Get PDF
    Publication history: Accepted - 18 January 2021; Published online - 6 March 2021The addition of cattle health and immunity traits to genomic selection indices holds promise to increase individual animal longevity and productivity, and decrease economic losses from disease. However, highly variable genomic loci that contain multiple immune-related genes were poorly assembled in the first iterations of the cattle reference genome assembly and underrepresented during the development of most commercial genotyping platforms. As a consequence, there is a paucity of genetic markers within these loci that may track haplotypes related to disease susceptibility. By using hierarchical assembly of bacterial artificial chromosome inserts spanning 3 of these immune-related gene regions, we were able to assemble multiple full-length haplotypes of the major histocompatibility complex, the leukocyte receptor complex, and the natural killer cell complex. Using these new assemblies and the recently released ARS-UCD1.2 reference, we aligned whole-genome shotgun reads from 125 sequenced Holstein bulls to discover candidate variants for genetic marker development. We selected 124 SNPs, using heuristic and statistical models to develop a custom genotyping panel. In a proof-of-principle study, we used this custom panel to genotype 1,797 Holstein cows exposed to bovine tuberculosis (bTB) that were the subject of a previous GWAS study using the Illumina BovineHD array. Although we did not identify any significant association of bTB phenotypes with these new genetic markers, 2 markers exhibited substantial effects on bTB phenotypic prediction. The models and parameters trained in this study serve as a guide for future marker discovery surveys particularly in previously unassembled regions of the cattle genome.Hammond, Heimeier, and Schwartz were supported by United Kingdom Research and Innovation, Biotechnology and Biological Sciences Research Council (UKRI-BBSRC) funding awards BB/M027155/1, BBS/E/I/00007031, BBS/E/I/00007038, BBS/E/I/00007039, BBS/OS/GC/000015B, and BBS/OS/GC/200016. Glass was supported by UKRI-BBSRC funding awards BB/J004227/1, BB/J004235/1, and BB/P013740; Glass, Skuce, and Allen were also supported by UKRI-BBSRC BB/E018386/1, BB/E018335/1 and 2, and BB/L004054/1; Glass was also supported by UKRI-BBSRC award BB/M027155/1 and BB/P013740/1. Wilkinson was supported by UKRI-BBSRC BB/L004054/1. We gratefully acknowledge the Agri-Food and Biosciences Institute (AFBI, Northern Ireland) who collected and provided samples in the form of phenotyped bTB case/control samples for use within this project. Bickhart, Bakshy, McClure, and Null were supported by appropriated projects 5090-31000-026-00-D, Investigating Microbial, Digestive, and Animal Factors to Increase Dairy Cow Performance and Nutrient Use Efficiency, and 8042-31000-001-00-D, Enhancing Genetic Merit of Ruminants Through Improved Genome Assembly, Annotation, and Selection, of the Agricultural Research Service (ARS) of the USDA. Cole and Null were supported by appropriated project 8042-31000-002-00-D, “Improving Dairy Animals by Increasing Accuracy of Genomic Prediction, Evaluating New Traits, and Redefining Selection Goals of ARS-USDA. Cole was also partially supported by the grant “Reducing Mastitis in the Dairy Cow by Increasing the Prevalence of Beneficial Polymorphisms in Genes Associated with Mastitis Resistance” from the Minnesota Agricultural Experiment Station Rapid Agricultural Response Fund. Smith was supported by appropriated project 3040-31000-100-00-D, “Developing a Systems Biology Approach to Enhance Efficiency and Sustainability of Beef and Lamb Production,” of ARS-USDA. Bickhart, Bakshy, Young, and Smith were supported by USDA NIFA grant number 2015-67015-22970, “US-UK Collaborative project: “Reassembly of cattle immune gene clusters for quantitative analysis.

    Genome wide CNV analysis reveals additional variants associated with milk production traits in Holsteins

    Get PDF
    Milk production is an economically important sector of global agriculture. Much attention has been paid to the identification of quantitative trait loci (QTL) associated with milk, fat, and protein yield and the genetic and molecular mechanisms underlying them. Copy number variation (CNV) is an emerging class of variants which may be associated with complex traits. In this study, we performed a genome-wide association between CNVs and milk production traits in 26,362 Holstein bulls and cows. A total of 99 candidate CNVs were identified using Illumina BovineSNP50 array data, and association tests for each production trait were performed using a linear regression analysis with PCA correlation. A total of 34 CNVs on 22 chromosomes were significantly associated with at least one milk production trait after false discovery rate (FDR) correction. Some of those CNVs were located within or near known QTL for milk production traits. We further investigated the relationship between associated CNVs with neighboring SNPs. For all 82 combinations of traits and CNVs (less than 400 kb in length), we found 17 cases where CNVs directly overlapped with tag SNPs and 40 cases where CNVs were adjacent to tag SNPs. In 5 cases, CNVs located were in strong linkage disequilibrium with tag SNPs, either within or adjacent to the same haplotype block. There were an additional 20 cases where CNVs did not have a significant association with SNPs, suggesting that the effects of those CNVs were probably not captured by tag SNPs. We conclude that combining CNV with SNP analyses reveals more genetic variations underlying milk production traits than those revealed by SNPs alone.https://doi.org/10.1186/1471-2164-15-68

    Variants at the ASIP locus contribute to coat color darkening in Nellore cattle

    Get PDF
    Background: Nellore cattle (Bos indicus) are well-known for their adaptation to warm and humid environments. Hair length and coat color may impact heat tolerance. The Nellore breed has been strongly selected for white coat, but bulls generally exhibit darker hair ranging from light grey to black on the head, neck, hump, and knees. Given the potential contribution of coat color variation to the adaptation of cattle populations to tropical and sub-tropical environments, our aim was to map positional and functional candidate genetic variants associated with darkness of hair coat (DHC) in Nellore bulls. Results: We performed a genome-wide association study (GWAS) for DHC using data from 432 Nellore bulls that were genotyped for more than 777 k single nucleotide polymorphism (SNP) markers. A single major association signal was detected in the vicinity of the agouti signaling protein gene (ASIP). The analysis of whole-genome sequence (WGS) data from 21 bulls revealed functional variants that are associated with DHC, including a structural rearrangement involving ASIP (ASIP-SV1). We further characterized this structural variant using Oxford Nanopore sequencing data from 13 Australian Brahman heifers, which share ancestry with Nellore cattle; we found that this variant originates from a 1155-bp deletion followed by an insertion of a transposable element of more than 150 bp that may impact the recruitment of ASIP non-coding exons. Conclusions: Our results indicate that the variant ASIP sequence causes darker coat pigmentation on specific parts of the body, most likely through a decreased expression of ASIP and consequently an increased production of eumelanin

    Widespread modulation of gene expression by copy number variation in skeletal muscle

    Get PDF
    Copy number variation (CNV) is a frequently observed deviation from the diploid state due to duplication or deletion of genomic regions. Although intensively analyzed for association with diseases and production traits, the specific mechanisms and extent by which such variations affect the phenotype are incompletely understood. We present an integrative study on CNV and genome-wide gene expression in Brazilian Bos indicus cattle. We analyzed CNVs inferred from SNP-chip data for effects on gene expression measured with RNA-seq in skeletal muscle samples of 183 steers. Local effects, where expression changes coincided with CNVs in the respective genes, were restricted to immune genes. Distal effects were attributable to several high-impact CNVs that modulated remote expression in an orchestrated and intertwined fashion. These CNVs were located in the vicinity of major skeletal muscle pathway regulators and associated genes were enriched for proteolysis, autophagy, and muscle structure development. From association analysis between CNVs and several meat quality and production traits, we found CNV-associated expression effects to also manifest at the phenotype level. Based on genome sequences of the population founders, we further demonstrate that CNVs with impact on expression and phenotype are passed on from one generation to another

    An improved pig reference genome sequence to enable pig genetics and genomics research.

    Get PDF
    BACKGROUND: The domestic pig (Sus scrofa) is important both as a food source and as a biomedical model given its similarity in size, anatomy, physiology, metabolism, pathology, and pharmacology to humans. The draft reference genome (Sscrofa10.2) of a purebred Duroc female pig established using older clone-based sequencing methods was incomplete, and unresolved redundancies, short-range order and orientation errors, and associated misassembled genes limited its utility. RESULTS: We present 2 annotated highly contiguous chromosome-level genome assemblies created with more recent long-read technologies and a whole-genome shotgun strategy, 1 for the same Duroc female (Sscrofa11.1) and 1 for an outbred, composite-breed male (USMARCv1.0). Both assemblies are of substantially higher (>90-fold) continuity and accuracy than Sscrofa10.2. CONCLUSIONS: These highly contiguous assemblies plus annotation of a further 11 short-read assemblies provide an unprecedented view of the genetic make-up of this important agricultural and biomedical model species. We propose that the improved Duroc assembly (Sscrofa11.1) become the reference genome for genomic research in pigs

    Ethiopian indigenous goats offer insights into past and recent demographic dynamics and localadaptation in sub-Saharan African goats

    Get PDF
    Abstract Knowledge on how adaptive evolution and human socio‐cultural and economic interests shaped livestock genomes particularly in sub‐Saharan Africa remains limited. Ethiopia is in a geographic region that has been critical in the history of African agriculture with ancient and diverse human ethnicity and bio‐climatic conditions. Using 52K genome‐wide data analysed in 646 individuals from 13 Ethiopian indigenous goat populations, we observed high levels of genetic variation. Although runs of homozygosity (ROH) were ubiquitous genome‐wide, there were clear differences in patterns of ROH length and abundance and in effective population sizes illustrating differences in genome homozygosity, evolutionary history, and management. Phylogenetic analysis incorporating patterns of genetic differentiation and gene flow with ancestry modelling highlighted past and recent intermixing and possible two deep ancient genetic ancestries that could have been brought by humans with the first introduction of goats in Africa. We observed four strong selection signatures that were specific to Arsi‐Bale and Nubian goats. These signatures overlapped genomic regions with genes associated with morphological, adaptation, reproduction and production traits due possibly to selection under environmental constraints and/or human preferences. The regions also overlapped uncharacterized genes, calling for a comprehensive annotation of the goat genome. Our results provide insights into mechanisms leading to genome variation and differentiation in sub‐Saharan Africa indigenous goats

    Genomic characteristics of cattle copy number variations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy number variation (CNV) represents another important source of genetic variation complementary to single nucleotide polymorphism (SNP). High-density SNP array data have been routinely used to detect human CNVs, many of which have significant functional effects on gene expression and human diseases. In the dairy industry, a large quantity of SNP genotyping results are becoming available and can be used for CNV discovery to understand and accelerate genetic improvement for complex traits.</p> <p>Results</p> <p>We performed a systematic analysis of CNV using the Bovine HapMap SNP genotyping data, including 539 animals of 21 modern cattle breeds and 6 outgroups. After correcting genomic waves and considering the pedigree information, we identified 682 candidate CNV regions, which represent 139.8 megabases (~4.60%) of the genome. Selected CNVs were further experimentally validated and we found that copy number "gain" CNVs were predominantly clustered in tandem rather than existing as interspersed duplications. Many CNV regions (~56%) overlap with cattle genes (1,263), which are significantly enriched for immunity, lactation, reproduction and rumination. The overlap of this new dataset and other published CNV studies was less than 40%; however, our discovery of large, high frequency (> 5% of animals surveyed) CNV regions showed 90% agreement with other studies. These results highlight the differences and commonalities between technical platforms.</p> <p>Conclusions</p> <p>We present a comprehensive genomic analysis of cattle CNVs derived from SNP data which will be a valuable genomic variation resource. Combined with SNP detection assays, gene-containing CNV regions may help identify genes undergoing artificial selection in domesticated animals.</p

    The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins

    Get PDF
    Snakebite envenoming is a serious and neglected tropical disease that kills ~100,000 people annually. High-quality, genome-enabled comprehensive characterization of toxin genes will facilitate development of effective humanized recombinant antivenom. We report a de novo near-chromosomal genome assembly of Naja naja, the Indian cobra, a highly venomous, medically important snake. Our assembly has a scaffold N50 of 223.35 Mb, with 19 scaffolds containing 95% of the genome. Of the 23,248 predicted protein-coding genes, 12,346 venom-gland-expressed genes constitute the \u27venom-ome\u27 and this included 139 genes from 33 toxin families. Among the 139 toxin genes were 19 \u27venom-ome-specific toxins\u27 (VSTs) that showed venom-gland-specific expression, and these probably encode the minimal core venom effector proteins. Synthetic venom reconstituted through recombinant VST expression will aid in the rapid development of safe and effective synthetic antivenom. Additionally, our genome could serve as a reference for snake genomes, support evolutionary studies and enable venom-driven drug discovery
    corecore