929 research outputs found
Comparative study of screened inter-layer interactions in the Coulomb drag effect in bilayer electron systems
Coulomb drag experiments in which the inter-layer resistivity is measured are
important as they provide information on the Coulomb interactions in bilayer
systems. When the layer densities are low correlation effects become
significant to account for the quantitative description of experimental
results. We investigate systematically various models of effective inter-layer
interactions in a bilayer system and compare our results with recent
experiments. In the low density regime, the correlation effects are included
via the intra- and inter-layer local-field corrections. We employ several
theoretical approaches to construct static local-field corrections. Our
comparative study demonstrates the importance of including the correlation
effects accurately in the calculation of drag resistivity. Recent experiments
performed at low layer densities are adequately described by effective
inter-layer interactions incorporating static correlations.Comment: Final Version. To appear in Phys. Rev.
Performance analysis of listed companies in the UAE-using DEA Malmquist index approach
Data Envelopment Analysis (DEA) is becoming an increasingly popular tool for assessing the relative performance of industries and companies. By applying DEA theory to the non-financial sector, the relative efficiency of 27 listed corporations in the United Arab Emirates (UAE) has been analyzed in this paper. The focus of the study has been on the impact of the financial crisis and the recovery thereafter. Further, the productivity change was decomposed into technical efficiency change and technological change by using the non-para- metric Malmquist Productivity Index (MPI) over the period from 2007 to 2014. Based on Malmquist analysis, we find that the most efficient industries during the post-crisis period were food and beverages, telecommunication and pharmaceuticals. In contrast, the sectors that were adversely affected by the crisis were services, real estate, construction and cements. The break-up of the TFP indicated that the efficiency indices in the top performing industries were driven by technological improvements or frontier effects. The top-per- forming companies in the UAE during the 2007-14 period demonstrated innovation-led growth, aided by the use of better technology, investments in capital equipment, and adoption of new production processes
The effect of sublattice symmetry breaking on the electronic properties of a doped graphene
Motivated by a number of recent experimental studies, we have carried out the
microscopic calculation of the quasiparticle self-energy and spectral function
in a doped graphene when a symmetry breaking of the sublattices is occurred.
Our systematic study is based on the many-body GW approach that is
established on the random phase approximation and on graphene's massive Dirac
equation continuum model. We report extensive calculations of both the real and
imaginary parts of the quasiparticle self-energy in the presence of a gap
opening. We also present results for spectral function, renormalized Fermi
velocity and band gap renormalization of massive Dirac Fermions over a broad
range of electron densities. We further show that the mass generating in
graphene washes out the plasmaron peak in spectral weight.Comment: 22 Pages, 10 Figure
Effective mass enhancement in two-dimensional electron systems: the role of interaction and disorder effects
Recent experiments on two-dimensional (2D) electron systems have found a
sharp increase in the effective mass of electrons with decreasing electron
density. In an effort to understand this behavior we employ the many-body
theory to calculate the quasiparticle effective mass in 2D electron systems.
Because the low density regime is explored in the experiments we use the
approximation where the vertex correction describes the
correlation effects to calculate the self-energy from which the effective mass
is obtained. We find that the quasiparticle effective mass shows a sharp
increase with decreasing electron density. Disorder effects due to charged
impurity scattering plays a crucial role in density dependence of effective
mass.Comment: To appear in Solid State Communication
Effective electron-electron interactions and magnetic phase transition in a two-dimensional electron liquid
Cataloged from PDF version of article.We investigate the spin-dependent effective electron-electron interactions in a uniform system of two-dimensional electrons to understand the spontaneous magnetization expected to occur at very low density. For this purpose, we adopt the Kukkonen-Overhauser form for the effective interactions which are built by accurately determined local-field factors describing the charge and spin fluctuations. The critical behavior of the effective interaction for parallel spin electrons allows us to quantitatively locate the transition to the ferromagnetic state at r(s) approximate to 27. When the finite width effects are approximately taken into account the transition occurs at r(s) approximate to 30 in agreement with recent quantum Monte Carlo calculations. (C) 2007 Elsevier Ltd. All rights reserved
Many-body effective mass enhancement in a two-dimensional electron liquid
Motivated by a large number of recent magnetotransport studies we have
revisited the problem of the microscopic calculation of the quasiparticle
effective mass in a paramagnetic two-dimensional (2D) electron liquid (EL). Our
systematic study is based on a generalized approximation which makes use
of the many-body local fields and takes advantage of the results of the most
recent QMC calculations of the static charge- and spin-response of the 2D EL.
We report extensive calculations for the many-body effective mass enhancement
over a broad range of electron densities. In this respect we critically examine
the relative merits of the on-shell approximation, commonly used in
weak-coupling situations, {\it versus} the actual self-consistent solution of
the Dyson equation. We show that already for and higher, a
solution of the Dyson equation proves here necessary in order to obtain a well
behaved effective mass. Finally we also show that our theoretical results for a
quasi-2D EL, free of any adjustable fitting parameters, are in good qualitative
agreement with some recent measurements in a GaAs/AlGaAs heterostructure.Comment: 12 pages, 3 figures, CMT28 Conference Proceedings, work related to
cond-mat/041226
Self-consistent Overhauser model for the pair distribution function of an electron gas at finite temperature
We present calculations of the spin-averaged pair distribution function
in a homogeneous gas of electrons moving in dimensionality D=3 or D=2 at
finite temperature. The model involves the solution of a two-electron
scattering problem via an effective potential which embodies many-body effects
through a self-consistent Hartree approximation, leading to two-body wave
functions to be averaged over a temperature-dependent distribution of relative
momentum for electron pairs. We report illustrative numerical results for
in an intermediate-coupling regime and interpret them in terms of
changes of short-range order with increasing temperature.Comment: 6 pages, 5 figures, submitted to Solid State Communication
KiDS-1000 Cosmology: Cosmic shear constraints and comparison between two point statistics
We present cosmological constraints from a cosmic shear analysis of the fourth data release of the Kilo-Degree Survey (KiDS-1000), which doubles the survey area with nine-band optical and near-infrared photometry with respect to previous KiDS analyses. Adopting a spatially flat standard cosmological model, we find S8 = σ8(Ωm/0.3)0.5 = 0.759−0.021+0.024 for our fiducial analysis, which is in 3σ tension with the prediction of the Planck Legacy analysis of the cosmic microwave background. We compare our fiducial COSEBIs (Complete Orthogonal Sets of E/B-Integrals) analysis with complementary analyses of the two-point shear correlation function and band power spectra, finding the results to be in excellent agreement. We investigate the sensitivity of all three statistics to a number of measurement, astrophysical, and modelling systematics, finding our S8 constraints to be robust and dominated by statistical errors. Our cosmological analysis of different divisions of the data passes the Bayesian internal consistency tests, with the exception of the second tomographic bin. As this bin encompasses low-redshift galaxies, carrying insignificant levels of cosmological information, we find that our results are unchanged by the inclusion or exclusion of this sample
- …