938 research outputs found
Instrumental oscillations in RHESSI count rates during solar flares
Aims: We seek to illustrate the analysis problems posed by RHESSI spacecraft
motion by studying persistent instrumental oscillations found in the
lightcurves measured by RHESSI's X-ray detectors in the 6-12 keV and 12-25 keV
energy range during the decay phase of the flares of 2004 November 4 and 6.
Methods: The various motions of the RHESSI spacecraft which may contribute to
the manifestation of oscillations are studied. The response of each detector in
turn is also investigated. Results: We find that on 2004 November 6 the
observed oscillations correspond to the nutation period of the RHESSI
instrument. These oscillations are also of greatest amplitude for detector 5,
while in the lightcurves of many other detectors the oscillations are small or
undetectable. We also find that the variation in detector pointing is much
larger during this flare than the counterexample of 2004 November 4.
Conclusions: Sufficiently large nutation motions of the RHESSI spacecraft lead
to clearly observable oscillations in count rates, posing a significant hazard
for data analysis. This issue is particularly problematic for detector 5 due to
its design characteristics. Dynamic correction of the RHESSI counts, accounting
for the livetime, data gaps, and the transmission of the bi-grid collimator of
each detector, is required to overcome this issue. These corrections should be
applied to all future oscillation studies.Comment: 8 pages, 10 figure
Diffusive Radiation in One-dimensional Langmuir Turbulence
We calculate spectra of radiation produced by a relativistic particle in the
presence of one-dimensional Langmuir turbulence which might be generated by a
streaming instability in the plasma, in particular, in the shock front or at
the shock-shock interactions. The shape of the radiation spectra is shown to
depend sensitively on the angle between the particle velocity and electric
field direction. The radiation spectrum in the case of exactly transverse
particle motion is degenerate and similar to that of spatially uniform Langmuir
oscillations. In case of oblique propagation, the spectrum is more complex, it
consists of a number of power-law regions and may contain a distinct
high-frequency spectral peak. %at \omega=2\omega\pe \gamma^2. The emission
process considered is relevant to various laboratory plasma settings and for
astrophysical objects as gamma-ray bursts and collimated jets.Comment: 4 pages, 1 figure, accepted for Phys. Rev.
Surface plasmon in 2D Anderson insulator with interactions
We study the effect of interactions on the zero-temperature a.c. conductivity
of 2D Anderson insulator at low frequencies. We show that the enhancement of
the real part of conductivity due to the Coulomb correlations in the occupation
numbers of localized states results in the change of the sign of imaginary part
within a certain frequency range. As a result, the propagation of a surface
plasmon in a localized system becomes possible. We analize the dispersion law
of the plasmon for the two cases: unscreened Coulomb interactions and the
interactions screened by a gate electrode spaced by some distance from the
electron plane.Comment: latex 22 pages + 2 uuencoded figure
Radio Spectral Evolution of an X-ray Poor Impulsive Solar Flare: Implications for Plasma Heating and Electron Acceleration
We present radio and X-ray observations of an impulsive solar flare that was
moderately intense in microwaves, yet showed very meager EUV and X-ray
emission. The flare occurred on 2001 Oct 24 and was well-observed at radio
wavelengths by the Nobeyama Radioheliograph (NoRH), the Nobeyama Radio
Polarimeters (NoRP), and by the Owens Valley Solar Array (OVSA). It was also
observed in EUV and X-ray wavelength bands by the TRACE, GOES, and Yohkoh
satellites. We find that the impulsive onset of the radio emission is
progressively delayed with increasing frequency relative to the onset of hard
X-ray emission. In contrast, the time of flux density maximum is progressively
delayed with decreasing frequency. The decay phase is independent of radio
frequency. The simple source morphology and the excellent spectral coverage at
radio wavelengths allowed us to employ a nonlinear chi-squared minimization
scheme to fit the time series of radio spectra to a source model that accounts
for the observed radio emission in terms of gyrosynchrotron radiation from
MeV-energy electrons in a relatively dense thermal plasma. We discuss plasma
heating and electron acceleration in view of the parametric trends implied by
the model fitting. We suggest that stochastic acceleration likely plays a role
in accelerating the radio-emitting electrons.Comment: 22 pages, 10 figure
Study of flare energy release using events with numerous type III-like bursts in microwaves
The analysis of narrowband drifting of type III-like structures in radio
bursts dynamic spectra allows to obtain unique information about primary energy
release mechanisms in solar flares. The SSRT spatially resolved images and a
high spectral and temporal resolution allow direct determination not only the
positions of its sources but also the exciter velocities along the flare loop.
Practically, such measurements are possible during some special time intervals
when the SSRT (about 5.7 GHz) is observing the flare region in two high-order
fringes; thus, two 1D scans are recorded simultaneously at two frequency bands.
The analysis of type III-like bursts recorded during the flare 14 Apr 2002 is
presented. Using-muliwavelength radio observations recorded by SSRT, SBRS,
NoRP, RSTN we study an event with series of several tens of drifting microwave
pulses with drift rates in the range from -7 to 13 GHz/s. The sources of the
fast-drifting bursts were located near the top of the flare loop in a volume of
a few Mm in size. The slow drift of the exciters along the flare loop suggests
a high pitch-anisotropy of the emitting electrons.Comment: 16 pages, 6 figures, Solar Physics, in press, 201
Observing the Sun with Atacama Large Millimeter/submillimeter Array (ALMA): High Resolution Interferometric Imaging
Observations of the Sun at millimeter and submillimeter wavelengths offer a
unique probe into the structure, dynamics, and heating of the chromosphere; the
structure of sunspots; the formation and eruption of prominences and filaments;
and energetic phenomena such as jets and flares. High-resolution observations
of the Sun at millimeter and submillimeter wavelengths are challenging due to
the intense, extended, low- contrast, and dynamic nature of emission from the
quiet Sun, and the extremely intense and variable nature of emissions
associated with energetic phenomena. The Atacama Large Millimeter/submillimeter
Array (ALMA) was designed with solar observations in mind. The requirements for
solar observations are significantly different from observations of sidereal
sources and special measures are necessary to successfully carry out this type
of observations. We describe the commissioning efforts that enable the use of
two frequency bands, the 3 mm band (Band 3) and the 1.25 mm band (Band 6), for
continuum interferometric-imaging observations of the Sun with ALMA. Examples
of high-resolution synthesized images obtained using the newly commissioned
modes during the solar commissioning campaign held in December 2015 are
presented. Although only 30 of the eventual 66 ALMA antennas were used for the
campaign, the solar images synthesized from the ALMA commissioning data reveal
new features of the solar atmosphere that demonstrate the potential power of
ALMA solar observations. The ongoing expansion of ALMA and solar-commissioning
efforts will continue to enable new and unique solar observing capabilities.Comment: 22 pages, 12 figures, accepted for publication in Solar Physic
RT-2 Detection of Quasi-Periodic Pulsations in the 2009 July 5 Solar Hard X-ray Flare
We present the results of an analysis of hard X-ray observations of the C2.7
solar flare detected by the RT-2 Experiment onboard the Coronas - Photon
satellite. We detect hard X-ray pulsations at periods of ~12 s and ~15 s. We
find a marginal evidence for a decrease in period with time. We have augmented
these results using the publicly available data from the RHESSI satellite. We
present a spectral analysis and measure the spectral parameters.Comment: 12 pages, 8 figures and 3 tables, accepted for publication in The
Astrophysical Journa
Brownian motion with dry friction: Fokker-Planck approach
We solve a Langevin equation, first studied by de Gennes, in which there is a
solid-solid or dry friction force acting on a Brownian particle in addition to
the viscous friction usually considered in the study of Brownian motion. We
obtain both the time-dependent propagator of this equation and the velocity
correlation function by solving the associated time-dependent Fokker-Planck
equation. Exact results are found for the case where only dry friction acts on
the particle. For the case where both dry and viscous friction forces are
present, series representations of the propagator and correlation function are
obtained in terms of parabolic cylinder functions. Similar series
representations are also obtained for the case where an external constant force
is added to the Langevin equation.Comment: 18 pages, 13 figures (in color
Investigation of quasi-periodic variations in hard X-rays of solar flares. II. Further investigation of oscillating magnetic traps
In our recent paper (Solar Physics 261, 233) we investigated quasi-periodic
oscillations of hard X-rays during impulsive phase of solar flares. We have
come to conclusion that they are caused by magnetosonic oscillations of
magnetic traps within the volume of hard-X-ray (HXR) loop-top sources. In the
present paper we investigate four flares which show clear quasi-periodic
sequences of HXR pulses. We also describe our phenomenological model of
oscillating magnetic traps to show that it can explain observed properties of
HXR oscillations. Main results are the following: 1. We have found that
low-amplitude quasi-periodic oscillations occur before impulsive phase of some
flares. 2. We have found that quasi-period of the oscillations can change in
some flares. We interpret this as being due to changes of the length of
oscillating magnetic traps. 3. During impulsive phase a significant part of the
energy of accelerated (non-thermal) electrons is deposited within the HXR
loop-top source. 4. Our analysis suggests that quick development of impulsive
phase is due to feedback between pulses of the pressure of accelerated
electrons and the amplitude of magnetic-trap oscillation. 5. We have also
determined electron number density and magnetic filed strength for HXR loop-top
sources of several flares. The values fall within the limits of cm, gauss.Comment: 18 pages, 14 figures, submitted to Solar Physic
Novel erythropoiesis stimulating protein (NESP) for the treatment of anaemia of chronic disease associated with cancer
Anaemia is a common haematologic disorder in patients with cancer and has a multifactorial aetiology, including the effects of the malignancy itself and residual effects from previous therapy. Novel erythropoiesis stimulating protein (NESP, darbepoetin alfa), a protein with additional sialic acid compared with erythropoietin (EPO), stimulates erythropoiesis by the same mechanism as recombinant human erythropoietin (rHuEPO) but it is biochemically distinct. NESP, with its approximately 3-fold greater serum half-life, can maintain haemoglobin levels as effectively as rHuEPO in anaemic patients with chronic renal failure and do so with less frequent dosing. We investigated the ability of NESP to safely increase haemoglobin levels of anaemic patients with non-myeloid malignancies not receiving chemotherapy. NESP was administered under the supervision of a physician at doses of 0.5, 1.0, 2.25 or 4.5 mcg kg−1wk−1for a maximum of 12 weeks. This report includes 89 patients completing the study by November 2000. NESP was well tolerated, with no reported dose-limiting toxicities or treatment-related severe adverse events. Increasing doses of NESP corresponded with increased efficacy. The percentage (95% confidence interval) of patients responding ranged from 61% (42%, 77%) in the 1.0 mcg kg−1wk−1group to 83% (65%, 94%) in the 4.5 mcg kg−1wk−1group. © 2001 Cance Cancer Research Campaig
- …