10,171 research outputs found

    Ultraviolet observations of the X-ray photoionized wind of Cygnus X-1 during X-ray soft/high state

    Full text link
    (Shortened) Ultraviolet observations of the black hole X-ray binary Cygnus X-1 were obtained using the STIS on HSTubble. We detect P Cygni line features show strong, broad absorption components when the X-ray source is behind the companion star and noticeably weaker absorption when the X-ray source is between us and the companion star. We fit the P Cygni profiles using the SEI method applied to a spherically symmetric stellar wind subject to X-ray photoionization from the black hole. The Si IV doublet provides the most reliable estimates of the parameters of the wind and X-ray illumination. The velocity vv increases with radius rr according to v=v(1r/r)βv=v_\infty(1-r_\star/r)^\beta, withβ0.75\beta\approx0.75 and v1420v_\infty\approx1420 km s1^{-1}.The microturbulent velocity was 160\approx160 km s1^{-1}. Our fit implies a ratio of X-ray luminosity to wind mass-loss rate of LX,38/M˙60.33_{X,38}/\dot M_{-6} \approx 0.33, measured at M˙6\dot M_{-6} = 4.8. Our models determine parameters that may be used to estimate the accretion rate onto the black hole and independently predict the X-ray luminosity. Our predicted Lx_x matches that determined by contemporaneous RXTE ASM remarkably well, but is a factor of 3 lower than the rate according to Bondi-Hoyle-Littleton spherical wind accretion. We suggest that some of the energy of accretion may go into powering a jet.Comment: 34 pages, 21 figures, 4 tables, accepted for publication in Ap

    G-protein–gated TRP-like Cationic Channel Activated by Muscarinic Receptors: Effect of Potential on Single-channel Gating

    Get PDF
    There is little information about the mechanisms by which G-protein–coupled receptors gate ion channels although many ionotropic receptors are well studied. We have investigated gating of the muscarinic cationic channel, which mediates the excitatory effect of acetylcholine in smooth muscles, and proposed a scheme consisting of four pairs of closed and open states. Channel kinetics appeared to be the same in cell-attached or outside-out patches whether the channel was activated by carbachol application or by intracellular dialysis with GTPγS. Since in the latter case G-proteins are permanently active, it is concluded that the cationic channel is the major determinant of its own gating, similarly to the KACh channel (Ivanova-Nikolova, T.T., and G.E. Breitwieser. 1997. J. Gen. Physiol. 109:245–253). Analysis of adjacent-state dwell times revealed connections between the states that showed features conserved among many other ligand-gated ion channels (e.g., nAChR, BKCa channel). Open probability (PO) of the cationic channel was increased by membrane depolarization consistent with the prominent U-shaped I-V relationship of the muscarinic whole-cell current at negative potentials. Membrane potential affected transitions within each closed-open state pair but had little effect on transitions between pairs; thus, the latter are likely to be caused by interactions of the channel with its ligands, e.g., Ca2+ and Gαo-GTP. Channel activity was highly heterogeneous, as was evident from the prominent cycling behavior when PO was measured over 5-s intervals. This was related to the variable frequency of openings (as in the KACh channel) and, especially, to the number of long openings between consecutive long shuttings. Analysis of the underlying Markov chain in terms of probabilities allowed us to evaluate the contribution of each open state to the integral current (from shortest to longest open state: 0.1, 3, 24, and 73%) as PO increased 525-fold in three stages

    Bilharzia in a small irrigation community: an assessment of water and toilet usage

    Get PDF
    A study on the hygienic usage of pit- latrines to avert bilharziasis in rural Zimbabwe.A questionnaire study was conducted in the Mushandike small scale irrigation schemes in Zimbabwe to investigate the following: 1) to establish whether field latrines are used or not; 2) to find out why people visit natural water bodies for bathing and laundry instead of using water from boreholes for these purposes; 3) to assess people’s knowledge on the transmission and control of schistosomiasis. Results of the study indicated that die field latrines tire utilized and that the borehole water is not preferred for bathing and laundry because of its hardness and oily nature. The results further indicated that the community was aware of schistosomiasis but their knowledge on transmission and control of the disease was limited. Possible reasons for tire observations made tire discussed in die paper and recommendations emanating from the study are stated

    Nonlinear Scattering of a Bose-Einstein Condensate on a Rectangular Barrier

    Full text link
    We consider the nonlinear scattering and transmission of an atom laser, or Bose-Einstein condensate (BEC) on a finite rectangular potential barrier. The nonlinearity inherent in this problem leads to several new physical features beyond the well-known picture from single-particle quantum mechanics. We find numerical evidence for a denumerably infinite string of bifurcations in the transmission resonances as a function of nonlinearity and chemical potential, when the potential barrier is wide compared to the wavelength of oscillations in the condensate. Near the bifurcations, we observe extended regions of near-perfect resonance, in which the barrier is effectively invisible to the BEC. Unlike in the linear case, it is mainly the barrier width, not the height, that controls the transmission behavior. We show that the potential barrier can be used to create and localize a dark soliton or dark soliton train from a phonon-like standing wave.Comment: 15 pages, 15 figures, new version includes clarification of definition of transmission coefficient in general nonlinear vs. linear cas

    Hard X-ray emission from the galaxy cluster A3667

    Get PDF
    We report the results of a long BeppoSAX observation of Abell 3667, one of the most spectacular galaxy cluster in the southern sky. A clear detection of hard X-ray radiation up to ~ 35 keV is reported, while a hard excess above the thermal gas emission is present at a marginal level that should be considered as an upper limit to the presence of nonthermal radiation. The strong hard excesses reported by BeppoSAX in Coma and A2256 and the only marginal detection of nonthermal emission in A3667 can be explained in the framework of the inverse Compton model. We argue that the nonthermal X-ray detections in the PDS energy range are related to the radio index structure of halos and relics present in the observed clusters of galaxie.Comment: 15 pages, 1 figure, ApJL in pres

    PKS B1400-33: an unusual radio relic in a poor cluster

    Get PDF
    We present new arcminute resolution radio images of the low surface brightness radio source PKS B1400-33 that is located in the poor cluster Abell S753. The observations consist of 330 MHz VLA, 843 MHz MOST and 1398 and 2378 MHz ATCA data. These new images, with higher surface brightness sensitivity than previous observations, reveal that the large scale structure consists of extended filamentary emission bounded by edge-brightened rims. The source is offset on one side of symmetrically distributed X-ray emission that is centered on the dominant cluster galaxy NGC 5419. PKS B1400-33 is a rare example of a relic in a poor cluster with radio properties unlike those of most relics and halos observed in cluster environments. The diffuse source appears to have had an unusual origin and we discuss possible mechanisms. We examine whether the source could be re-energized relic radio plasma or a buoyant synchrotron bubble that is a relic of activity in NGC 5419. The more exciting prospect is that the source is relic plasma preserved in the cluster gaseous environment following the chance injection of a radio lobe into the ICM as a result of activity in a galaxy at the periphery of the cluster.Comment: 26 pages, 8 figures, accepted for publication in the Astronomical Journa

    Frontiers of the physics of dense plasmas and planetary interiors: experiments, theory, applications

    Full text link
    Recent developments of dynamic x-ray characterization experiments of dense matter are reviewed, with particular emphasis on conditions relevant to interiors of terrestrial and gas giant planets. These studies include characterization of compressed states of matter in light elements by x-ray scattering and imaging of shocked iron by radiography. Several applications of this work are examined. These include the structure of massive "Super Earth" terrestrial planets around other stars, the 40 known extrasolar gas giants with measured masses and radii, and Jupiter itself, which serves as the benchmark for giant planets.Comment: Accepted to Physics of Plasmas special issue. Review from HEDP/HEDLA-08, April 12-15, 200

    Closing in on the picture : analyzing interactions in video recordings

    Get PDF
    This paper provides a detailed account of the processing and analysing of data, obtained through video recording during reflective practitioner research. It sets out five stages in the analysis of video recordings of classroom interactions during a series of educational drama lessons: from decisions relating to the selection of data for close analysis, to the seeking of themes, and finally to the presentation of conclusions. The researcher adapted and synthesised several processes derived from discourse analysis (Wells, 2001; Spiers, 2004; Gee, 2005) to produce a range of instruments for use in transcription and analysis of verbal and non-verbal discourse. These include: a simple transcription key; classifications for verbal and non-verbal discourse; and a template for a transcription and analysis matrix

    Galaxy And Mass Assembly (GAMA) blended spectra catalogue: strong galaxy-galaxy lens and occulting galaxy pair candidates

    Get PDF
    We present the catalogue of blended galaxy spectra from the Galaxy And Mass Assembly (GAMA) survey. These are cases where light from two galaxies are significantly detected in a single GAMA fibre. Galaxy pairs identified from their blended spectrum fall into two principal classes: they are either strong lenses, a passive galaxy lensing an emission-line galaxy; or occulting galaxies, serendipitous overlaps of two galaxies, of any type. Blended spectra can thus be used to reliably identify strong lenses for follow-up observations (high-resolution imaging) and occulting pairs, especially those that are a late-type partly obscuring an early-type galaxy which are of interest for the study of dust content of spiral and irregular galaxies. The GAMA survey setup and its AUTOZ automated redshift determination were used to identify candidate blended galaxy spectra from the cross-correlation peaks. We identify 280 blended spectra with a minimum velocity separation of 600 km s−1, of which 104 are lens pair candidates, 71 emission-line-passive pairs, 78 are pairs of emission-line galaxies and 27 are pairs of galaxies with passive spectra. We have visually inspected the candidates in the Sloan Digital Sky Survey (SDSS) and Kilo Degree Survey (KiDS) images. Many blended objects are ellipticals with blue fuzz (Ef in our classification). These latter ‘Ef’ classifications are candidates for possible strong lenses, massive ellipticals with an emission-line galaxy in one or more lensed images. The GAMA lens and occulting galaxy candidate samples are similar in size to those identified in the entire SDSS. This blended spectrum sample stands as a testament of the power of this highly complete, second-largest spectroscopic survey in existence and offers the possibility to expand e.g. strong gravitational lens surveys
    corecore