148 research outputs found

    Effect of projectile nose shape on ballistic resistance of interstitial-free steel sheets

    Get PDF
    In this paper an experimental and numerical work is reported concerning the process of perforation of thin steel plates using different projectile nose shapes. The main goal is to analyze how the projectile shape may change the ballistic properties of materials. A wide range of impact velocities from 35 to 180 m/s has been covered during the tests. All the projectiles were 13 mm in diameter and the targets were 1 mm thick, as such the projectile can be regarded as rigid and the target sheets were of interstitial-free (IF) steel. The mass ratio (projectile mass/steel sheet mass) and the ratio between the span of the steel sheet and the diameter of the projectile were kept constant, equal to 0.38 and 3.85 respectively. To define the thermoviscoplastic behavior of the target material, the Rusinek-Klepaczko (RK) constitutive model [1] was used. The complete identification of the material constants was done based on a rigorous material characterization. Numerical simulations of some experimental tests were carried out using a non-linear finite element code ABAQUS/Explicit. It was found that the numerical models are able to describe the physical mechanisms in the perforation process with a good accuracy.The National Centre of Research and Development under the grant WND-DEM-1-203/00

    Symmetry Representations in the Rigged Hilbert Space Formulation of Quantum Mechanics

    Get PDF
    We discuss some basic properties of Lie group representations in rigged Hilbert spaces. In particular, we show that a differentiable representation in a rigged Hilbert space may be obtained as the projective limit of a family of continuous representations in a nested scale of Hilbert spaces. We also construct a couple of examples illustrative of the key features of group representations in rigged Hilbert spaces. Finally, we establish a simple criterion for the integrability of an operator Lie algebra in a rigged Hilbert space

    Techno-Economic Analysis of Electrocoagulation on Water Reclamation and Bacterial/Viral Indicator Reductions of a High-Strength Organic Wastewater—Anaerobic Digestion Effluent

    Get PDF
    This study investigated the use of iron and aluminum and their combinations as electrodes to determine the technically sound and economically feasible electrochemical approach for the treatment of anaerobic digestion effluent. The results indicated that the use of iron as anode and cathode is the most suitable solution among different electrode combinations. The reduction of turbidity, total chemical oxygen demand, total phosphorus, total coliforms, Escherichia coli, Enterococci, and phages in the reclaimed water were 99%, 91%, 100%, 1.5 log, 1.7 log, 1.0 log, and 2.0 log, respectively. The economic assessment further concluded that the average treatment cost is $3 per 1000 L for a small-scale operation handling 3000 L wastewater/day. This study demonstrated that the electrocoagulation (EC) is a promising technique for the recovery and reclamation of water from anaerobic digestion effluent. Even though its energy consumption is higher and the nitrogen removal is insufficient compared to some conventional wastewater treatment technologies, there are several advantages of the EC treatment, such as short retention time, small footprint, no mixing, and gradual addition of coagulants. These features make EC technology applicable to be used alone or combined with other technologies for a wide range of wastewater treatment application

    Gene signature of the post-Chernobyl papillary thyroid cancer

    No full text
    Purpose: Following the nuclear accidents in Chernobyl and later in Fukushima, the nuclear community has been faced with important issues concerning how to search for and diagnose biological consequences of low-dose internal radiation contamination. Although after the Chernobyl accident an increase in childhood papillary thyroid cancer (PTC) was observed, it is still not clear whether the molecular biology of PTCs associated with low-dose radiation exposure differs from that of sporadic PTC. Methods: We investigated tissue samples from 65 children/young adults with PTC using DNA microarray (Affymetrix, Human Genome U133 2.0 Plus) with the aim of identifying molecular differences between radiation-induced (exposed to Chernobyl radiation, ECR) and sporadic PTC. All participants were resident in the same region so that confounding factors related to genetics or environment were minimized. Results: There were small but significant differences in the gene expression profiles between ECR and non-ECR PTC (global test, p < 0.01), with 300 differently expressed probe sets (p < 0.001) corresponding to 239 genes. Multifactorial analysis of variance showed that besides radiation exposure history, the BRAF mutation exhibited independent effects on the PTC expression profile; the histological subset and patient age at diagnosis had negligible effects. Ten genes (PPME1, HDAC11, SOCS7, CIC, THRA, ERBB2, PPP1R9A, HDGF, RAD51AP1, and CDK1) from the 19 investigated with quantitative RT-PCR were confirmed as being associated with radiation exposure in an independent, validation set of samples. Conclusion: Significant, but subtle, differences in gene expression in the post-Chernobyl PTC are associated with previous low-dose radiation exposure

    Correlation Testing in Nuclear Density Functional Theory

    Full text link
    Correlation testing provides a quick method of discriminating amongst potential terms to include in a nuclear mass formula or functional and is a necessary tool for further nuclear mass models; however a firm mathematical foundation of the method has not been previously set forth. Here, the necessary justification for correlation testing is developed and more detail of the motivation behind its use is give. Examples are provided to clarify the method analytically and for computational benchmarking. We provide a quantitative demonstration of the method's performance and short-comings, highlighting also potential issues a user may encounter. In concluding we suggest some possible future developments to improve the limitations of the method.Comment: Accepted to EPJ-

    What are the evolutionary constraints on larval growth in a trophically transmitted parasite?

    Get PDF
    For organisms with a complex life cycle, a large larval size is generally beneficial, but it may come at the expense of prolonged development. Individuals that grow fast may avoid this tradeoff and switch habitats at both a larger size and younger age. A fast growth rate itself can be costly, however, as it requires greater resource intake. For parasites, fast larval growth is assumed to increase the likelihood of host death before transmission to the next host occurs. Using the tapeworm Schistocephalus solidus in its copepod first intermediate host, I investigated potential constraints in the parasite’s larval life history. Fast-growing parasites developed infectivity earlier, indicating there is no functional tradeoff between size and developmental time. There was significant growth variation among full-sib worm families, but fast-growing sibships were not characterized by lower host survival or more predation-risky host behavior. Parental investment also had little effect on larval growth rates. The commonly assumed constraints on larval growth and development were not observed in this system, so it remains unclear what prevents worms from exploiting their intermediate hosts more aggressively

    Neuroimaging in Dementia

    Get PDF
    Dementia is a common illness with an incidence that is rising as the aged population increases. There are a number of neurodegenerative diseases that cause dementia, including Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal dementia, which is subdivided into the behavioral variant, the semantic variant, and nonfluent variant. Numerous other neurodegenerative illnesses have an associated dementia, including corticobasal degeneration, Creutzfeldt–Jakob disease, Huntington’s disease, progressive supranuclear palsy, multiple system atrophy, Parkinson’s disease dementia, and amyotrophic lateral sclerosis. Vascular dementia and AIDS dementia are secondary dementias. Diagnostic criteria have relied on a constellation of symptoms, but the definite diagnosis remains a pathologic one. As treatments become available and target specific molecular abnormalities, differentiating amongst the various primary dementias early on becomes essential. The role of imaging in dementia has traditionally been directed at ruling out treatable and reversible etiologies and not to use imaging to better understand the pathophysiology of the different dementias. Different brain imaging techniques allow the examination of the structure, biochemistry, metabolic state, and functional capacity of the brain. All of the major neurodegenerative disorders have relatively specific imaging findings that can be identified. New imaging techniques carry the hope of revolutionizing the diagnosis of neurodegenerative disease so as to obtain a complete molecular, structural, and metabolic characterization, which could be used to improve diagnosis and to stage each patient and follow disease progression and response to treatment. Structural and functional imaging modalities contribute to the diagnosis and understanding of the different dementias

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes
    corecore