26 research outputs found

    Genome-Wide Copy Number Variation in Epilepsy: Novel Susceptibility Loci in Idiopathic Generalized and Focal Epilepsies

    Get PDF
    Epilepsy is one of the most common neurological disorders in humans with a prevalence of 1% and a lifetime incidence of 3%. Several genes have been identified in rare autosomal dominant and severe sporadic forms of epilepsy, but the genetic cause is unknown in the vast majority of cases. Copy number variants (CNVs) are known to play an important role in the genetic etiology of many neurodevelopmental disorders, including intellectual disability (ID), autism, and schizophrenia. Genome-wide studies of copy number variation in epilepsy have not been performed. We have applied whole-genome oligonucleotide array comparative genomic hybridization to a cohort of 517 individuals with various idiopathic, non-lesional epilepsies. We detected one or more rare genic CNVs in 8.9% of affected individuals that are not present in 2,493 controls; five individuals had two rare CNVs. We identified CNVs in genes previously implicated in other neurodevelopmental disorders, including two deletions in AUTS2 and one deletion in CNTNAP2. Therefore, our findings indicate that rare CNVs are likely to contribute to a broad range of generalized and focal epilepsies. In addition, we find that 2.9% of patients carry deletions at 15q11.2, 15q13.3, or 16p13.11, genomic hotspots previously associated with ID, autism, or schizophrenia. In summary, our findings suggest common etiological factors for seemingly diverse diseases such as ID, autism, schizophrenia, and epilepsy

    On λ

    No full text

    A Novel Protein Tyrosine Phosphatase Gene is Mutated in Progressive Myoclonus Epilepsy of the Lafora Type (Epm2)

    No full text
    Progressive myoclonus epilepsy of the Lafora type or Lafora disease (EPM2; McKusick no. 254780) is an autosomal recessive disorder characterized by epilepsy, myoclonus, progressive neurological deterioration and glycogen-like intracellular inclusion bodies (Lafora bodies). A gene for EPM2 previously has been mapped to chromosome 6q23-q25 using linkage analysis and homozygosity mapping. Here we report the positional cloning of the 6q EPM2 gene. A microdeletion within the EPM2 critical region, present in homozygosis in an affected individual, was found to disrupt a novel gene encoding a putative protein tyrosine phosphatase (PTPase). The gene, denoted EPM2,presents alternative splicing in the 5' and 3' end regions. Mutational analysis revealed that EPM2 patients are homozygous for loss-of-function mutations in EPM2. These findings suggest that Lafora disease results from the mutational inactivation of a PTPase activity that may be important in the control of glycogen metabolism.WoSScopu

    A Novel Protein Tyrosine Phosphatase Gene Is Mutated in Progressive Myoclonus Epilepsy of the Lafora Type (EPM2)

    Get PDF
    Progressive myoclonus epilepsy of the Lafora type or Lafora disease (EPM2; McKusick no. 254780) is an autosomal recessive disorder characterized by epilepsy, myoclonus, progressive neurological deterioration and glycogen-like intracellular inclusion bodies (Lafora bodies). A gene for EPM2 previously has been mapped to chromosome 6q23-q25 using linkage analysis and homozygosity mapping. Here we report the positional cloning of the 6q EPM2 gene. A microeletion within the EPM2 critical region, present in homozygosis in an affected individual, was found to disrupt a novel gene encoding a putative protein tyrosine phosphatase (PTPase). The gene, denoted EPM2, presents alternative splicing in the 5′ and 3′ end regions. Mutational analysis revealed that EPM2 patients are homozygous for loss-of-function mutations in EPM2. These findings suggest that Lafora disease results from the mutational inactivation of a PTPase activity that may be important in the control of glycogen metabolis
    corecore