712 research outputs found

    Novel Function of Ceramide for Regulation of Mitochondrial ATP Release in Astrocytes

    Get PDF
    We reported that amyloid β peptide (Aβ42) activated neutral SMase 2 (nSMase2), thereby increasing the concentration of the sphingolipid ceramide in astrocytes. Here, we show that Aβ42 induced mitochondrial fragmentation in wild-type astrocytes, but not in nSMase2-deficient cells or astrocytes treated with fumonisin B1 (FB1), an inhibitor of ceramide synthases. Unexpectedly, ceramide depletion was concurrent with rapid movements of mitochondria, indicating an unknown function of ceramide for mitochondria. Using immunocytochemistry and super-resolution microscopy, we detected ceramide-enriched and mitochondria-associated membranes (CEMAMs) that were codistributed with microtubules. Interaction of ceramide with tubulin was confirmed by cross-linking to N-[9-(3-pent-4-ynyl-3-H-diazirine-3-yl)-nonanoyl]-D-erythro-sphingosine (pacFACer), a bifunctional ceramide analog, and binding of tubulin to ceramide-linked agarose beads. Ceramide-associated tubulin (CAT) translocated from the perinuclear region to peripheral CEMAMs and mitochondria, which was prevented in nSMase2-deficient or FB1-treated astrocytes. Proximity ligation and coimmunoprecipitation assays showed that ceramide depletion reduced association of tubulin with voltage-dependent anion channel 1 (VDAC1), an interaction known to block mitochondrial ADP/ATP transport. Ceramide-depleted astrocytes contained higher levels of ATP, suggesting that ceramide-induced CAT formation leads to VDAC1 closure, thereby reducing mitochondrial ATP release, and potentially motility and resistance to Aβ42. Our data also indicate that inhibiting ceramide generation may protect mitochondria in Alzheimer’s disease

    Crystal growth of the acentric organic nonlinear optical material methyl-p-hydroxybenzoate : morphological variations in crystals grown by physical vapor transport

    Get PDF
    Single crystals of the acentric compound methyl-p-hydroxybenzoate were grown by self-nucleation and seeded growth from the vapor phase by the physical vapor transport (PVT) process. In the temperature range of 80-95 °C (nucleation supersaturation 0.97 to 0.88), all crystals were of the polymorphic form as produced by room-temperature solution growth. Self-nucleated crystals varied in macromorphology from columnar to octahedral to skewed octahedral and finally to skewed columnar but retained the same crystal forms indicated by theoretical calculations. Micromorphological studies of growth faces indicated that these variations result from changes in growth mechanisms that influence both the defect structure and perfection of the growing crystal. X-ray topographic studies confirmed that growth under the most ideal conditions, when the dominant faces of the crystals were growing by a dislocation induced Burton, Cabrera, and Frank mechanism, yielded the structurally most perfect crystals. Preliminary studies of seeded growth were performed as a prelude to using PVT for the growth of larger crystals. The seeded growth followed a different pattern of supersaturation dependence. All crystals showed the same asymmetric growth along the polar axis that has come to be regarded as characteristic of these highly polar acentric materials when grown from solution

    Highly Conducting pi-Conjugated Molecular Junctions Covalently Bonded to Gold Electrodes

    Full text link
    We measure electronic conductance through single conjugated molecules bonded to Au metal electrodes with direct Au-C covalent bonds using the scanning tunneling microscope based break-junction technique. We start with molecules terminated with trimethyltin end groups that cleave off in situ resulting in formation of a direct covalent sigma bond between the carbon backbone and the gold metal electrodes. The molecular carbon backbone used in this study consist of a conjugated pi-system that has one terminal methylene group on each end, which bonds to the electrodes, achieving large electronic coupling of the electrodes to the pi-system. The junctions formed with the prototypical example of 1,4-dimethylenebenzene show a conductance approaching one conductance quantum (G0 = 2e2/h). Junctions formed with methylene terminated oligophenyls with two to four phenyl units show a hundred-fold increase in conductance compared with junctions formed with amine-linked oligophenyls. The conduction mechanism for these longer oligophenyls is tunneling as they exhibit an exponential dependence of conductance with oligomer length. In addition, density functional theory based calculations for the Au-xylylene-Au junction show near-resonant transmission with a cross-over to tunneling for the longer oligomers.Comment: Accepted to the Journal of the American Chemical Society as a Communication

    Nanog Prion-like Assembly Mediates Dna Bridging to Facilitate Chromatin Reorganization and Activation of Pluripotency

    Get PDF
    Human NANOG expression resets stem cells to ground-state pluripotency. Here we identify the unique features of human NANOG that relate to its dose-sensitive function as a master transcription factor. NANOG is largely disordered, with a C-terminal prion-like domain that phase-transitions to gel-like condensates. Full-length NANOG readily forms higher-order oligomers at low nanomolar concentrations, orders of magnitude lower than typical amyloids. Using single-molecule Förster resonance energy transfer and fluorescence cross-correlation techniques, we show that NANOG oligomerization is essential for bridging DNA elements in vitro. Using chromatin immunoprecipitation sequencing and Hi-C 3.0 in cells, we validate that NANOG prion-like domain assembly is essential for specific DNA recognition and distant chromatin interactions. Our results provide a physical basis for the indispensable role of NANOG in shaping the pluripotent genome. NANOG\u27s unique ability to form prion-like assemblies could provide a cooperative and concerted DNA bridging mechanism that is essential for chromatin reorganization and dose-sensitive activation of ground-state pluripotency

    The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots

    Get PDF
    During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots

    Enhanced thermally activated delayed fluorescence through bridge modification in sulfone-based emitters employed in deep blue organic light-emitting diodes

    Get PDF
    The authors are grateful to the Engineering and Physical Sciences Research Council (EPSRC) for support from grants EP/P010482/1 and EP/R035164/1. P. Rajamalli acknowledges support from a Marie Skłodowska-Curie Individual Fellowship (MCIF; No. 749557). Dongyang Chen and Wenbo Li thank the China Scholarship Council (grant numbers 201603780001 and 201708060003).Two thermally activated delayed fluorescence (TADF) emitters bearing a new dipyridyl sulfone core as the electron-accepting unit and di-tert-butyl carbazoles as electron-donating units are reported. The two emitters, pDTCz-2DPyS and pDTCz-3DPyS , differ in the regiochemistry of the substitution about the pyridine rings [ pDTCz-2DPyS = 9,9'-(sulfonylbis(pyridine-6,3- diyl))bis(3,6-di-tert-butyl-9H-carbazole); pDTCz-3DPyS = 9,9'-(sulfonylbis(pyridine-5,2-diyl))bis(3,6-di-tert-butyl-9H- carbazole)]. Both compounds show blue emission in the range of 450-465 nm, which is in line with theoretical calculations. They have very similar singlet-triplet energy (ΔEST) gaps (ΔEST = 0.22 eV and 0.21 eV for pDTCz-3DPyS and pDTCz-2DPyS , respectively). pDTCz-2DPyS has a much larger proportion of delayed emission (26.2%) than pDTCz-3DPyS (1.2%)]. The two compounds show comparable photoluminescence quantum yields of 60% in 2,8- bis(diphenylphosphoryl)dibenzo[b,d]thiophene (PPT) doped films. The performance of organic light-emitting diodes (OLEDs) depends on the host used. The maximum external quantum efficiency (EQE) in the PPT host of pDTCz-3DPyS is 7.0%, whilst for pDTCz-2DPyS it is 12.4%. High performance is obtained for both materials when bis[2-(diphenylphosphino)phenyl] ether oxide (DPEPO) is used as the host, with a maximum EQE of 13.4% for pDTCz-3DPyS and 11.4% for pDTCz-2DPyS . In addition, pDTCz-3DPyS shows pure blue electroluminescence with CIE color coordinates of (0.15, 0.12) compared to pDTCz- 2DPyS with coordinates of (0.15, 0.19).PreprintPostprintPeer reviewe
    • …
    corecore