75 research outputs found

    TMEM8 – a non-globin gene entrapped in the globin web

    Get PDF
    For more than 30 years it was believed that globin gene domains included only genes encoding globin chains. Here we show that in chickens, the domain of α-globin genes also harbor the non-globin gene TMEM8. It was relocated to the vicinity of the α-globin cluster due to inversion of an ∼170-kb genomic fragment. Although in humans TMEM8 is preferentially expressed in resting T-lymphocytes, in chickens it acquired an erythroid-specific expression profile and is upregulated upon terminal differentiation of erythroblasts. This correlates with the presence of erythroid-specific regulatory elements in the body of chicken TMEM8, which interact with regulatory elements of the α-globin genes. Surprisingly, TMEM8 is not simply recruited to the α-globin gene domain active chromatin hub. An alternative chromatin hub is assembled, which includes some of the regulatory elements essential for the activation of globin gene expression. These regulatory elements should thus shuttle between two different chromatin hubs

    Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures

    Get PDF
    DNA supercoiling is an inherent consequence of twisting DNA and is critical for regulating gene expression and DNA replication. However, DNA supercoiling at a genomic scale in human cells is uncharacterized. To map supercoiling we used biotinylated-trimethylpsoralen as a DNA structure probe to show the genome is organized into supercoiling domains. Domains are formed and remodeled by RNA polymerase and topoisomerase activities and are flanked by GC-AT boundaries and CTCF binding sites. Under-wound domains are transcriptionally active, enriched in topoisomerase I, “open” chromatin fibers and DNaseI sites, but are depleted of topoisomerase II. Furthermore DNA supercoiling impacts on additional levels of chromatin compaction as under-wound domains are cytologically decondensed, topologically constrained, and decompacted by transcription of short RNAs. We suggest that supercoiling domains create a topological environment that facilitates gene activation providing an evolutionary purpose for clustering genes along chromosomes

    Long-Term Functional Side-Effects of Stimulants and Sedatives in Drosophila melanogaster

    Get PDF
    Background: Small invertebrate animals, such as nematodes and fruit flies, are increasingly being used to test candidate drugs both for specific therapeutic purposes and for long-term health effects. Some of the protocols used in these experiments feature such experimental design features as lifelong virginity and very low densities. By contrast, the ability of both fruit flies and nematodes to resist stress is frequently correlated with their longevity and other functional measures, suggesting that low-stress assays are not necessarily the only useful protocol for testing the long-term effects of drugs. Methodology/Principal Findings: Here we report an alternative protocol for fruit fly drug-testing that maximizes reproductive opportunities and other types of interaction, with moderately high population densities. We validate this protocol using two types of experimental tests: 1. We show that this protocol detects previously well-established genetic differences between outbred fruit fly populations. 2. We show that this protocol is able to distinguish among the long-term effects of similar types of drugs within two broad categories, stimulants and tranquilizers. Conclusions: Large-scale fly drug testing can be conducted using mixed-sex high-density cage assays. We find that the commonly-used stimulants caffeine and theobromine differ dramatically in their chronic functional effects, theobromine being more benign. Likewise, we find that two generic pharmaceutical tranquilizers, lithium carbonate and valproic acid, differ dramatically in their chronic effects, lithium being more benign. However, these findings do not necessarily apply t

    Intercalation of small molecules into DNA in chromatin is primarily controlled by superhelical constraint

    Get PDF
    The restricted access of regulatory factors to their binding sites on DNA wrapped around the nucleosomes is generally interpreted in terms of molecular shielding exerted by nucleosomal structure and internucleosomal interactions. Binding of proteins to DNA often includes intercalation of hydrophobic amino acids into the DNA. To assess the role of constrained superhelicity in limiting these interactions, we studied the binding of small molecule intercalators to chromatin in close to native conditions by laser scanning cytometry. We demonstrate that the nucleosome-constrained superhelical configuration of DNA is the main barrier to intercalation. As a result, intercalating compounds are virtually excluded from the nucleosome-occupied regions of the chromatin. Binding of intercalators to extranucleosomal regions is limited to a smaller degree, in line with the existence of net supercoiling in the regions comprising linker and nucleosome free DNA. Its relaxation by inducing as few as a single nick per ~50 kb increases intercalation in the entire chromatin loop, demonstrating the possibility for long-distance effects of regulatory potential

    Effects of DNA supercoiling on chromatin architecture

    Get PDF
    Disruptions in chromatin structure are necessary for the regulation of eukaryotic genomes, from remodelling of nucleosomes at the base pair level through to large-scale chromatin domains that are hundreds of kilobases in size. RNA polymerase is a powerful motor which, prevented from turning with the tight helical pitch of the DNA, generates over-wound DNA ahead of itself and under-wound DNA behind. Mounting evidence supports a central role for transcription-dependent DNA supercoiling in disrupting chromatin structure at all scales. This supercoiling changes the properties of the DNA helix in a manner that substantially alters the binding specificity of DNA binding proteins and complexes, including nucleosomes, polymerases, topoisomerases and transcription factors. For example, transient over-wound DNA destabilises nucleosome core particles ahead of a transcribing polymerase, whereas under-wound DNA facilitates pre-initiation complex formation, transcription factor binding and nucleosome core particle association behind the transcribing polymerase. Importantly, DNA supercoiling can also dissipate through DNA, even in a chromatinised context, to influence both local elements and large chromatin domains. We propose a model in which changes in unconstrained DNA supercoiling influences higher levels of chromatin organisation through the additive effects of DNA supercoiling on both DNA-protein and DNA-nucleosome interactions. This model links small-scale changes in DNA and chromatin to the higher-order fibre and large-scale chromatin structures, providing a mechanism relating gene regulation to chromatin architecture in vivo

    The polyomavirus enhancer activates chromatin accessibility on integration into the HPRT gene.

    No full text
    Recent studies suggest that enhancers may increase the accessibility of chromatin to transcription factors. To test the effects of a viral enhancer on chromatin accessibility, we have inserted minigenes with or without the polyomavirus enhancer into the third exon of the hypoxanthine phosphoribosyltransferase (HPRT) gene by homologous recombination and have prepared high-resolution maps of gene accessibility by using a novel polymerase chain reaction assay for DNase I sensitivity. In its native state, we find that the HPRT gene has low sensitivity to DNase I in fibrosarcoma cells. Insertion of the polyomavirus enhancer and neo reporter gene into exon 3 confers altered HPRT DNase I sensitivity for several kilobases on either side of the enhancer. The changes in DNase I sensitivity peak near the enhancer and decline with distance from the enhancer. The increase in HPRT DNase I sensitivity persisted when the tk promoter was deleted from the inserted construct but disappeared when the enhancer was deleted. These experiments identify the polyomavirus enhancer as a cis-acting initiator of chromatin accessibility
    corecore