280 research outputs found

    Computational investigations on the binding mode of ligands for the cannabinoid-activated G protein-coupled receptor GPR18

    Get PDF
    GPR18 is an orphan G protein-coupled receptor (GPCR) expressed in cells of the immune system. It is activated by the cannabinoid receptor (CB) agonist A9-tetrahydrocannabinol (THC). Several further lipids have been proposed to act as GPR18 agonists, but these results still require unambiguous confirmation. In the present study, we constructed a homology model of the human GPR18 based on an ensemble of three GPCR crystal structures to investigate the binding modes of the agonist THC and the recently reported antagonists which feature an imidazothiazinone core to which a (substituted) phenyl ring is connected via a lipophilic linker. Docking and molecular dynamics simulation studies were performed. As a result, a hydrophobic binding pocket is predicted to accommodate the imidazothiazinone core, while the terminal phenyl ring projects towards an aromatic pocket. Hydrophobic interaction of Cys251 with substituents on the phenyl ring could explain the high potency of the most potent derivatives. Molecular dynamics simulation studies suggest that the binding of imidazothiazinone antagonists stabilizes transmembrane regions TM1, TM6 and TM7 of the receptor through a salt bridge between Asp118 and Lys133. The agonist THC is presumed to bind differently to GPR18 than to the distantly related CB receptors. This study provides insights into the binding mode of GPR18 agonists and antagonists which will facilitate future drug design for this promising potential drug target

    Glare Reducing Windscreen Using Principle of Selective Reflection

    Get PDF
    ABSTRACT:Automobiles are prone to accidents due to glare effect at night. The scope of this research is to reduce the glare. Theconcept of Electrochromic glass was used. A windscreen was made up of a pair of float glass enclosed with Twisted Nematic Liquid Crystals. The liquid crystal material exhibited a property of selective reflection of incident light. A liquid crystal material E48 was used for this purpose and the results were studied. The wavelength of light within a narrow range which caused glare was selectively reflected. This resulted in reduced intensity of glare thus protecting the driver from glare during night travel

    An Integrated Pipeline of Open Source Software Adapted for Multi-CPU Architectures: Use in the Large-Scale Identification of Single Nucleotide Polymorphisms

    Get PDF
    The large amounts of EST sequence data available from a single species of an organism as well as for several species within a genus provide an easy source of identification of intra- and interspecies single nucleotide polymorphisms (SNPs). In the case of model organisms, the data available are numerous, given the degree of redundancy in the deposited EST data. There are several available bioinformatics tools that can be used to mine this data; however, using them requires a certain level of expertise: the tools have to be used sequentially with accompanying format conversion and steps like clustering and assembly of sequences become time-intensive jobs even for moderately sized datasets. We report here a pipeline of open source software extended to run on multiple CPU architectures that can be used to mine large EST datasets for SNPs and identify restriction sites for assaying the SNPs so that cost-effective CAPS assays can be developed for SNP genotyping in genetics and breeding applications. At the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), the pipeline has been implemented to run on a Paracel high-performance system consisting of four dual AMD Opteron processors running Linux with MPICH. The pipeline can be accessed through user-friendly web interfaces at http://hpc.icrisat.cgiar.org/PBSWeb and is available on request for academic use. We have validated the developed pipeline by mining chickpea ESTs for interspecies SNPs, development of CAPS assays for SNP genotyping, and confirmation of restriction digestion pattern at the sequence level

    Precise Constraints on the Energy Budget of WASP-121 b from Its JWST NIRISS/SOSS Phase Curve

    Get PDF
    Ultra-hot Jupiters exhibit day-to-night temperature contrasts upwards of 1000 K due to competing effects of strong winds, short radiative timescales, magnetic drag, and H2 dissociation/recombination. Spectroscopic phase curves provide critical insights into these processes by mapping temperature distributions and constraining the planet’s energy budget across different pressure levels. Here, we present the first NIRISS/SOSS phase curve of an ultra-hot Jupiter, WASP-121 b. The instrument’s bandpass [0.6–2.85 μm] captures an estimated 50%–83% of the planet’s bolometric flux, depending on orbital phase, allowing for unprecedented constraints on the planet’s global energy budget; previous measurements with HST/WFC3 and JWST/NIRSpec/G395H captured roughly 20% of the planetary flux. Accounting for the unobserved regions of the spectrum, we estimate effective day- and nightside temperatures of Tday = 2717 ± 17 K and Tnight=1562−19+18 K corresponding to a Bond albedo of AB = 0.277 ± 0.016 and a heat recirculation efficiency of ϵ = 0.246 ± 0.014. Matching the phase-dependent effective temperature with energy balance models yields a similar Bond albedo of 0.3 and a mixed layer pressure of 1 bar consistent with photospheric pressures, but unexpectedly slow winds of 0.2 km s−1, indicative of inefficient heat redistribution. The shorter optical wavelengths of the NIRISS/SOSS Order 2 yield a geometric albedo of Ag=0.093−0.027+0.029 (3σ upper limit of 0.175), reinforcing the unexplained trend of hot Jupiters exhibiting larger Bond than geometric albedos. We also detect near-zero phase curve offsets for wavelengths above 1.5 μm, consistent with inefficient heat transport, while shorter wavelengths potentially sensitive to reflected light show eastward offsets

    Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications

    Get PDF

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Nanobio Silver: Its Interactions with Peptides and Bacteria, and Its Uses in Medicine

    Full text link

    Green fabrication of stable lead-free bismuth based perovskite solar cells using a non-toxic solvent

    Get PDF
    The very fast evolution in certified efficiency of lead-halide organic-inorganic perovskite solar cells to 24.2%, on par and even surpassing the record for polycrystalline silicon solar cells (22.3%), bears the promise of a new era in photovoltaics and revitalisation of thin film solar cell technologies. However, the presence of toxic lead and particularly toxic solvents during the fabrication process makes large-scale manufacturing of perovskite solar cells challenging due to legislation and environment issues. For lead-free alternatives, non-toxic tin, antimony and bismuth based solar cells still rely on up-scalable fabrication processes that employ toxic solvents. Here we employ non-toxic methyl-acetate solution processed (CH3NH3)3Bi2I9 films to fabricate lead-free, bismuth based (CH3NH3)3Bi2I9 perovskites on mesoporous TiO2 architecture using a sustainable route. Optoelectronic characterization, X-ray diffraction and electron microscopy show that the route can provide homogeneous and good quality (CH3NH3)3Bi2I9 films. Fine-tuning the perovskite/hole transport layer interface by the use of conventional 2,2′,7,7′-tetrakis (N,N′-di-p-methoxyphenylamino)−9,9′-spirbiuorene, known as Spiro-OMeTAD, and poly(3-hexylthiophene-2,5-diyl - P3HT as hole transporting materials, yields power conversion efficiencies of 1.12% and 1.62% under 1 sun illumination. Devices prepared using poly(3-hexylthiophene-2,5-diyl hole transport layer shown 300 h of stability under continuous 1 sun illumination, without the use of an ultra violet-filter
    corecore