217 research outputs found

    Universal Equilibrium Currents in the Quantum Hall Fluid

    Full text link
    The equilibrium current distribution in a quantum Hall fluid that is subjected to a slowly varying confining potential is shown to generally consist of strips or channels of current, which alternate in direction, and which have universal integrated strengths. A measurement of these currents would yield direct independent measurements of the proper quasiparticle and quasihole energies in the fractional quantum Hall states.Comment: 4 pages, Revte

    Effect of electrical bias on spin transport across a magnetic domain wall

    Get PDF
    We present a theory of the current-voltage characteristics of a magnetic domain wall between two highly spin-polarized materials, which takes into account the effect of the electrical bias on the spin-flip probability of an electron crossing the wall. We show that increasing the voltage reduces the spin-flip rate, and is therefore equivalent to reducing the width of the domain wall. As an application, we show that this effect widens the temperature window in which the operation of a unipolar spin diode is nearly ideal.Comment: 11 pages, 3 figure

    Exact exchange-correlation potential for a time-dependent two electron system

    Get PDF
    We obtain an exact solution of the time-dependent Schroedinger equation for a two-electron system confined to a plane by an isotropic parabolic potential whose curvature is periodically modulated in time. From this solution we compute the exact time-dependent exchange correlation potential v_xc which enters the Kohn-Sham equation of time-dependent density functional theory. Our exact result provides a benchmark against which various approximate forms for v_xc can be compared. Finally v_xc is separated in an adiabatic and a pure dynamical part and it is shown that, for the particular system studied, the dynamical part is negligible.Comment: 23 pages, 6 figure

    Local exchange-correlation vector potential with memory in Time-Dependent Density Functional Theory: the generalized hydrodynamics approach

    Full text link
    Using Landau Fermi liquid theory we derive a nonlinear non-adiabatic approximation for the exchange-correlation (xc) vector potential defined by the xc stress tensor. The stress tensor is a local nonlinear functional of two basic variables - the displacement vector and the second-rank tensor which describes the evolution of momentum in a local frame moving with Eulerian velocity. For irrotational motion and equilibrium initial state the dependence on the tensor variable reduces to that on a metrics generated by a dynamical deformation of the system.Comment: RevTex, 5 pages, no figures. Final version published in PR

    Correlation effects and the high-frequency spin susceptibility of an electron liquid: Exact limits

    Full text link
    Spin correlations in an interacting electron liquid are studied in the high-frequency limit and in both two and three dimensions. The third-moment sum rule is evaluated and used to derive exact limiting forms (at both long- and short-wavelengths) for the spin-antisymmetric local-field factor, limωG(q,ω)\lim_{\omega \to \infty}G_-({\bf q, \omega}). In two dimensions limωG(q,ω)\lim_{\omega \to \infty}G_-({\bf q, \omega}) is found to diverge as 1/q1/q at long wavelengths, and the spin-antisymmetric exchange-correlation kernel of time-dependent spin density functional theory diverges as 1/q21/q^2 in both two and three dimensions. These signal a failure of the local-density approximation, one that can be redressed by alternative approaches.Comment: 5 page

    Many-body effective mass enhancement in a two-dimensional electron liquid

    Get PDF
    Motivated by a large number of recent magnetotransport studies we have revisited the problem of the microscopic calculation of the quasiparticle effective mass in a paramagnetic two-dimensional (2D) electron liquid (EL). Our systematic study is based on a generalized GWGW approximation which makes use of the many-body local fields and takes advantage of the results of the most recent QMC calculations of the static charge- and spin-response of the 2D EL. We report extensive calculations for the many-body effective mass enhancement over a broad range of electron densities. In this respect we critically examine the relative merits of the on-shell approximation, commonly used in weak-coupling situations, {\it versus} the actual self-consistent solution of the Dyson equation. We show that already for rs3r_s \simeq 3 and higher, a solution of the Dyson equation proves here necessary in order to obtain a well behaved effective mass. Finally we also show that our theoretical results for a quasi-2D EL, free of any adjustable fitting parameters, are in good qualitative agreement with some recent measurements in a GaAs/AlGaAs heterostructure.Comment: 12 pages, 3 figures, CMT28 Conference Proceedings, work related to cond-mat/041226

    Spin Hall Drag

    Get PDF
    We predict a new effect in electronic bilayers: the {\it Spin Hall Drag}. The effect consists in the generation of spin accumulation across one layer by an electric current along the other layer. It arises from the combined action of spin-orbit and Coulomb interactions. Our theoretical analysis, based on the Boltzmann equation formalism, identifies two main contributions to the spin Hall drag resistivity: the side-jump contribution, which dominates at low temperature, going as T2T^2, and the skew-scattering contribution, which is proportional to T3T^3. The induced spin accumulation is large enough to be detected in optical rotation experiments.Comment: 5 pages, 2 figure

    Time-dependent density functional theory beyond the adiabatic local density approximation

    Get PDF
    In the current density functional theory of linear and nonlinear time-dependent phenomena, the treatment of exchange and correlation beyond the level of the adiabatic local density approximation is shown to lead to the appearance of viscoelastic stresses in the electron fluid. Complex and frequency-dependent viscosity/elasticity coefficients are microscopically derived and expressed in terms of properties of the homogeneous electron gas. As a first consequence of this formalism, we provide an explicit formula for the linewidths of collective excitations in electronic systems.Comment: RevTeX, 4 page

    Gauge-Invariant Formulation of Spin-Current-Density Functional Theory

    Get PDF
    Spin-currents and non-abelian gauge potentials in electronic systems can be treated by spin-current-density functional theory, whose main input is the exchange-correlation (xc) energy expressed as a functional of spin-currents. Constructing a functional of spin currents that is invariant under U(1)×\timesSU(2) transformations is a long-standing challenge. We solve the problem by expressing the energy as a functional of a new variable we call "invariant vorticity". As an illustration we construct the xc energy functional for a two-dimensional electron gas with linear spin-orbit coupling and show that it is proportional to the fourth power of the spin current.Comment: 8 pages, 3 figures, submitte

    Coulomb-induced Rashba spin-orbit coupling in semiconductor quantum wells

    Get PDF
    In the absence of an external field, the Rashba spin-orbit interaction (SOI) in a two-dimensional electron gas in a semiconductor quantum well arises entirely from the screened electrostatic potential of ionized donors. We adjust the wave functions of a quantum well so that electrons occupying the first (lowest) subband conserve their spin projection along the growth axis (Sz), while the electrons occupying the second subband precess due to Rashba SOI. Such a specially designed quantum well may be used as a spin relaxation trigger: electrons conserve Sz when the applied voltage (or current) is lower than a certain threshold V*; higher voltage switches on the Dyakonov-Perel spin relaxation.Comment: 4+ pages, 6 figure
    corecore