158 research outputs found

    The relevance of medium of instruction and mother tongue for different types of educational systems

    Get PDF
    The relationship between student performance in education and medium of instruction needs to be investigated in a systems-oriented way, comparing what educational systems are able to achieve given different medium of instruction policies. This article combines data on language, medium of instruction, participation in education and effectiveness of education to propose a new categorization of educational systems: colonial systems, decolonial systems and systems in transition. It shows that there is an evolution towards decolonial systems, but that such an evolution will require a transition to indigenous languages as medium of instruction. It briefly discusses the pitfalls and possibilities of such a transition.Descriptive and Comparative Linguistic

    Temperature dependence of surface-melting-induced faceting of surfaces vicinal to Pb(111)

    Get PDF
    FWN – Publicaties zonder aanstelling Universiteit Leide

    Aerosol hygroscopicity derived from size-segregated chemical composition and its parameterization in the North China Plain

    Get PDF
    Hygroscopic growth of aerosol particles is of significant importance in quantifying the aerosol radiative effect in the atmosphere. In this study, hygroscopic properties of ambient particles are investigated based on particle chemical composition at a suburban site in the North China Plain during the HaChi campaign (Haze in China) in summer 2009. The size-segregated aerosol particulate mass concentration as well as the particle components such as inorganic ions, organic carbon and water-soluble organic carbon (WSOC) are identified from aerosol particle samples collected with a ten-stage impactor. An iterative algorithm is developed to evaluate the hygroscopicity parameter κ from the measured chemical composition of particles. During the HaChi summer campaign, almost half of the mass concentration of particles between 150 nm and 1 μm is contributed by inorganic species. Organic matter (OM) is abundant in ultrafine particles, and 77% of the particulate mass with diameter (Dp) of around 30 nm is composed of OM. A large fraction of coarse particle mass is undetermined and is assumed to be insoluble mineral dust and liquid water. The campaign's average size distribution of κ values shows three distinct modes: a less hygroscopic mode (Dp 1 μm) with κ of about 0.1. The peak of the κ curve appears around 450 nm with a maximum value of 0.35. The derived κ values are consistent with results measured with a high humidity tandem differential mobility analyzer within the size range of 50–250 nm. Inorganics are the predominant species contributing to particle hygroscopicity, especially for particles between 150 nm and 1 μm. For example, NH4NO3, H2SO4, NH4HSO4 and (NH4)2SO4 account for nearly 90% of κ for particles of around 900 nm. For ultrafine particles, WSOC plays a critical role in particle hygroscopicity due to the predominant mass fraction of OM in ultrafine particles. WSOC for particles of around 30 nm contribute 52% of κ. Aerosol hygroscopicity is related to synoptic transport patterns. When southerly wind dominates, particles are more hygroscopic; when northerly wind dominates, particles are less hygroscopic. Aerosol hygroscopicity also has a diurnal variation, which can be explained by the diurnal evolution of planetary boundary layer, photochemical aging processes during daytime and enhanced black carbon emission at night. κ is highly correlated with mass fractions of SO42−, NO3− and NH4+ for all sampled particles as well as with the mass fraction of WSOC for particles of less than 100 nm. A parameterization scheme for κ is developed using mass fractions of SO42−, NO3−, NH4+ and WSOC due to their high correlations with κ, and κ calculated from the parameterization agrees well with κ derived from the particle's chemical composition. Further analysis shows that the parameterization scheme is applicable to other aerosol studies in China

    Development of an online-coupled MARGA upgrade for the 2 h interval quantification of low-molecular-weight organic acids in the gas and particle phases

    Get PDF
    A method is presented to quantify the low-molecular-weight organic acids such as formic, acetic, propionic, butyric, pyruvic, glycolic, oxalic, malonic, succinic, malic, glutaric, and methanesulfonic acid in the atmospheric gas and particle phases, based on a combination of the Monitor for AeRosols and Gases in ambient Air (MARGA) and an additional ion chromatography (Compact IC) instrument. Therefore, every second hourly integrated MARGA gas and particle samples were collected and analyzed by the Compact IC, resulting in 12 values per day for each phase. A proper separation of the organic target acids was initially tackled by a laboratory IC optimization study, testing different separation columns, eluent compositions and eluent flow rates for both isocratic and gradient elution. Satisfactory resolution of all compounds was achieved using a gradient system with two coupled anion-exchange separation columns. Online pre-concentration with an enrichment factor of approximately 400 was achieved by solid-phase extraction consisting of a methacrylate-polymer-based sorbent with quaternary ammonium groups. The limits of detection of the method range between 0.5&thinsp;ng&thinsp;m−3 for malonate and 17.4&thinsp;ng&thinsp;m−3 for glutarate. Precisions are below 1.0&thinsp;%, except for glycolate (2.9&thinsp;%) and succinate (1.0&thinsp;%). Comparisons of inorganic anions measured at the TROPOS research site in Melpitz, Germany, by the original MARGA and the additional Compact IC are in agreement with each other (R2&thinsp;=&thinsp;0.95–0.99). Organic acid concentrations from May 2017 as an example period are presented. Monocarboxylic acids were dominant in the gas phase with mean concentrations of 306&thinsp;ng&thinsp;m−3 for acetic acid, followed by formic (199&thinsp;ng&thinsp;m−3), propionic (83&thinsp;ng&thinsp;m−3), pyruvic (76&thinsp;ng&thinsp;m−3), butyric (34&thinsp;ng&thinsp;m−3) and glycolic acid (32&thinsp;ng&thinsp;m−3). Particulate glycolate, oxalate and methanesulfonate were quantified with mean concentrations of 26, 31 and 30&thinsp;ng&thinsp;m−3, respectively. Elevated concentrations of gas-phase formic acid and particulate oxalate in the late afternoon indicate photochemical formation as a source.</p

    Should every child with epilepsy undergo screening for psychiatric comorbidities?

    Get PDF
    Purpose: We aimed to build a classification system that uses resting-state (no visible scalp epileptic activity) EEG-based directed functional connectivity values to assign a patient to one of three classes: left TLE (LTLE), right TLE (RTLE) or healthy control. Methods: Twenty LTLE, 20 RTLE and 35 healthy controls underwent resting-state high-density EEG. For each subject, sixty 1-sec epochs free of artifacts or interictal spikes were selected. The source activity was obtained for 82 regions of interest using an individual head model and distributed linear inverse solution. The summed outflow and whole-brain directed functional connectivity were estimated in the theta, alpha and beta frequency bands using Granger-causal modeling. A Random Forest classifier (an ensemble of decision tree classifiers) was then used to assign the subject to one of three classes. The mean classification accuracy was computed with a leave-one-out procedure. We selected a maximum of six connectivity values for classification, using a greedy forward selection algorithm. Finally, three classifiers were built: ‘Control vs. LTLE’, ‘Control vs. RTLE’ and ‘LTLE vs. RTLE’. In the final classification system, a new subject is assigned to the class that was most voted by these three classifiers. Results: The ‘Control vs. RTLE’ classifier achieved an accuracy of 78.2% (sensitivity: 80.0%, specificity 77.2%), ‘Control vs. LTLE’ an accuracy of 83.6% (sensitivity 85.0%, specificity 82.9%) and ‘LTLE vs. RTLE’ an accuracy of 85.0% (sensitivity 85.0%, specificity 85.0%). Combining these classifiers into one system yielded that 16, 15 and 27 subjects were correctly classified as being, respectively, RTLE, LTLE and control. Conclusion: The high accuracy achieved demonstrates the potential of resting-state EEG-based directed functional connectivity for the diagnosis and lateralization of TLE. This could constitute a new clinical biomarker for surgical candidates and earlier in the course of the disease

    A new method to determine the mixing state of light absorbing carbonaceous using the measured aerosol optical properties and number size distributions

    Get PDF
    In this paper, the mixing state of light absorbing carbonaceous (LAC) was investigated with a two-parameter aerosol optical model and in situ aerosol measurements at a regional site in the North China Plain (NCP). A closure study between the hemispheric backscattering fraction (HBF) measured by an integrating nephelometer and that calculated with a modified Mie model was conducted. A new method was proposed to retrieve the ratio of the externally mixed LAC mass to the total mass of LAC (rext-LAC) based on the assumption that the ambient aerosol particles were externally mixed and consisted of a pure LAC material and a core-shell morphology in which the core is LAC and the shell is a less absorbing material. A Monte Carlo simulation was applied to estimate the overall influences of input parameters of the algorithm to the retrieved rext-LAC. The diurnal variation of rext-LAC was analyzed and the PartMC-MOSAIC model was used to simulate the variation of the aerosol mixing state. Results show that, for internally mixed particles, the assumption of core-shell mixture is more appropriate than that of homogenous mixture which has been widely used in aerosol optical calculations. A significant diurnal pattern of the retrieved rext-LAC was found, with high values during the daytime and low values at night. The consistency between the retrieved rext-LAC and the model results indicates that the diurnal variation of LAC mixing state is mainly caused by the diurnal evolution of the mixing layer

    Size-resolved aerosol composition at an urban and a rural site in the Po Valley in summertime: implications for secondary aerosol formation

    Get PDF
    The aerosol size-segregated chemical composition was analyzed at an urban (Bologna) and a rural (San Pietro Capofiume) site in the Po Valley, Italy, during June and July 2012, by ion-chromatography (major water-soluble ions and organic acids) and evolved gas analysis (total and water-soluble carbon), to investigate sources and mechanisms of secondary aerosol formation during the summer. A significant enhancement of secondary organic and inorganic aerosol mass was observed under anticyclonic conditions with recirculation of planetary boundary layer air but with substantial differences between the urban and the rural site. The data analysis, including a principal component analysis (PCA) on the size-resolved dataset of chemical concentrations, indicated that the photochemical oxidation of inorganic and organic gaseous precursors was an important mechanism of secondary aerosol formation at both sites. In addition, at the rural site a second formation process, explaining the largest fraction (22 %) of the total variance, was active at nighttime, especially under stagnant conditions. Nocturnal chemistry in the rural Po Valley was associated with the formation of ammonium nitrate in large accumulation-mode (0.42–1.2 µm) aerosols favored by local thermodynamic conditions (higher relative humidity and lower temperature compared to the urban site). Nocturnal concentrations of fine nitrate were, in fact, on average 5 times higher at the rural site than in Bologna. The water uptake by this highly hygroscopic compound under high RH conditions provided the medium for increased nocturnal aerosol uptake of water-soluble organic gases and possibly also for aqueous chemistry, as revealed by the shifting of peak concentrations of secondary compounds (water-soluble organic carbon (WSOC) and sulfate) toward the large accumulation mode (0.42–1.2 µm). Contrarily, the diurnal production of WSOC (proxy for secondary organic aerosol) by photochemistry was similar at the two sites but mostly affected the small accumulation mode of particles (0.14–0.42 µm) in Bologna, while a shift to larger accumulation mode was observed at the rural site. A significant increment in carbonaceous aerosol concentration (for both WSOC and water-insoluble carbon) at the urban site was recorded mainly in the quasi-ultrafine fraction (size range 0.05–0.14 µm), indicating a direct influence of traffic emissions on the mass concentrations of this range of particles
    • …
    corecore