661 research outputs found
Dynamics of Low Anisotropy Morphologies in Directional Solidification
We report experimental results on quasi-two-dimensional diffusion limited
growth in directionally solidified succinonitrile with small amounts of
poly(ethylene oxide), acetone, or camphor as a solute. Seaweed growth, or dense
branching morphology, is selected by growing grains close to the
plane, where the in-plane surface tension is nearly isotropic. The observed
growth morphologies are very sensitive to small anisotropies in surface tension
caused by misorientations from the plane. Different seaweed
morphologies are found, including the degenerate, the stabilized, and the
strongly tilted seaweeds. The degenerate seaweeds show a limited fractal
scaling range and, with increased undercooling, suggests a transition from
"fractal" to "compact" seaweed. Strongly tilted seaweeds demonstrate a
significant twofold anisotropy. In addition, seaweed-dendrite transitions are
observed in low anisotropy growth.Comment: 12 pages, 17 figures, submitted to Phys. Rev. E, reduced image
quality for smaller file siz
Transients in sheared granular matter
As dense granular materials are sheared, a shear band and an anisotropic
force network form. The approach to steady state behavior depends on the
history of the packing and the existing force and contact network. We present
experiments on shearing of dense granular matter in a 2D Couette geometry in
which we probe the history and evolution of shear bands by measuring particle
trajectories and stresses during transients. We find that when shearing is
stopped and restarted in the same direction, steady state behavior is
immediately reached, in agreement with the typical assumption that the system
is quasistatic. Although some relaxation of the force network is observed when
shearing is stopped, quasistatic behavior is maintained because the contact
network remains essentially unchanged. When the direction of shear is reversed,
a transient occurs in which stresses initially decrease, changes in the force
network reach further into the bulk, and particles far from the wheel become
more mobile. This occurs because the force network is fragile to changes
transverse to the force network established under previous shear; particles
must rearrange before becoming jammed again, thereby providing resistance to
shear in the reversed direction. The strong force network is reestablished
after displacing the shearing surface , where is the mean grain
diameter. Steady state velocity profiles are reached after a shear of . Particles immediately outside of the shear band move on average less than
1 diameter before becoming jammed again. We also examine particle rotation
during this transient and find that mean particle spin decreases during the
transient, which is related to the fact that grains are not interlocked as
strongly.Comment: 7 pages, 11 figures, accepted to Eur. Phys. J. E, revised version
based on referee suggestion
Manual for starch gel electrophoresis: A method for the detection of genetic variation
The procedure to conduct horizontal starch gel electrophoresis on enzymes is described in detail. Areas covered are (I) collection and storage of specimens, (2)
preparation of tissues, (3) preparation of a starch gel, (4) application of enzyme extracts to a gel, (5) setting up a gel for electrophoresis, (6) slicing a gel, and (7)
staining a gel. Recipes are also included for 47 enzyme stains and 3 selected gel buffers. (PDF file contains 26 pages.
Photoelastic force measurements in granular materials
Photoelastic techniques are used to make both qualitative and quantitative
measurements of the forces within idealized granular materials. The method is
based on placing a birefringent granular material between a pair of polarizing
filters, so that each region of the material rotates the polarization of light
according to the amount of local of stress. In this review paper, we summarize
past work using the technique, describe the optics underlying the technique,
and illustrate how it can be used to quantitatively determine the vector
contact forces between particles in a 2D granular system. We provide a
description of software resources available to perform this task, as well as
key techniques and resources for building an experimental apparatus
The Behavior of Granular Materials under Cyclic Shear
The design and development of a parallel plate shear cell for the study of
large scale shear flows in granular materials is presented. The parallel plate
geometry allows for shear studies without the effects of curvature found in the
more common Couette experiments. A system of independently movable slats
creates a well with side walls that deform in response to the motions of grains
within the pack. This allows for true parallel plate shear with minimal
interference from the containing geometry. The motions of the side walls also
allow for a direct measurement of the velocity profile across the granular
pack. Results are presented for applying this system to the study of transients
in granular shear and for shear-induced crystallization. Initial shear profiles
are found to vary from packing to packing, ranging from a linear profile across
the entire system to an exponential decay with a width of approximately 6 bead
diameters. As the system is sheared, the velocity profile becomes much sharper,
resembling an exponential decay with a width of roughly 3 bead diameters.
Further shearing produces velocity profiles which can no longer be fit to an
exponential decay, but are better represented as a Gaussian decay or error
function profile. Cyclic shear is found to produce large scale ordering of the
granular pack, which has a profound impact on the shear profile. There exist
periods of time in which there is slipping between layers as well as periods of
time in which the layered particles lock together resulting in very little
relative motion.Comment: 10 pages including 12 figure
Evolution of displacements and strains in sheared amorphous solids
The local deformation of two-dimensional Lennard-Jones glasses under imposed
shear strain is studied via computer simulations. Both the mean squared
displacement and mean squared strain rise linearly with the length of the
strain interval over which they are measured. However, the
increase in displacement does not represent single-particle diffusion. There
are long-range spatial correlations in displacement associated with slip lines
with an amplitude of order the particle size. Strong dependence on system size
is also observed. The probability distributions of displacement and strain are
very different. For small the distribution of displacement has
a plateau followed by an exponential tail. The distribution becomes Gaussian as
increases to about .03. The strain distributions consist of
sharp central peaks associated with elastic regions, and long exponential tails
associated with plastic regions. The latter persist to the largest studied.Comment: Submitted to J. Phys. Cond. Mat. special volume for PITP Conference
on Mechanical Behavior of Glassy Materials. 16 Pages, 8 figure
Quasiperiodic Tip Splitting in Directional Solidification
We report experimental results on the tip splitting dynamics of seaweed
growth in directional solidification of succinonitrile alloys with
poly(ethylene oxide) or acetone as solutes. The seaweed or dense branching
morphology was selected by solidifying grains which are oriented close to the
{111} plane. Despite the random appearance of the growth, a quasiperiodic tip
splitting morphology was observed in which the tip alternately splits to the
left and to the right. The tip splitting frequency f was found to be related to
the growth velocity V as a power law f V^{1.5}. This finding
is consistent with the predictions of a tip splitting model that is also
presented. Small anisotropies are shown to lead to different kinds of seaweed
morphologies.Comment: 4 pages, 7 figures, submitted to Physical Review Letter
On the Application of a Monolithic Array for Detecting Intensity-Correlated Photons Emitted by Different Source Types
It is not widely appreciated that many subtleties are involved in the
accurate measurement of intensity-correlated photons; even for the original
experiments of Hanbury Brown and Twiss (HBT). Using a monolithic 4x4 array of
single-photon avalanche diodes (SPADs), together with an off-chip algorithm for
processing streaming data, we investigate the difficulties of measuring
second-order photon correlations g2 in a wide variety of light fields that
exhibit dramatically different correlation statistics: a multimode He-Ne laser,
an incoherent intensity-modulated lamp-light source and a thermal light source.
Our off-chip algorithm treats multiple photon-arrivals at pixel-array pairs, in
any observation interval, with photon fluxes limited by detector saturation, in
such a way that a correctly normalized g2 function is guaranteed. The impact of
detector background correlations between SPAD pixels and afterpulsing effects
on second-order coherence measurements is discussed. These results demonstrate
that our monolithic SPAD array enables access to effects that are otherwise
impossible to measure with stand-alone detectors.Comment: 17 pages, 6 figure
Memory of the Unjamming Transition during Cyclic Tiltings of a Granular Pile
Discrete numerical simulations are performed to study the evolution of the
micro-structure and the response of a granular packing during successive
loading-unloading cycles, consisting of quasi-static rotations in the gravity
field between opposite inclination angles. We show that internal variables,
e.g., stress and fabric of the pile, exhibit hysteresis during these cycles due
to the exploration of different metastable configurations. Interestingly, the
hysteretic behaviour of the pile strongly depends on the maximal inclination of
the cycles, giving evidence of the irreversible modifications of the pile state
occurring close to the unjamming transition. More specifically, we show that
for cycles with maximal inclination larger than the repose angle, the weak
contact network carries the memory of the unjamming transition. These results
demonstrate the relevance of a two-phases description -strong and weak contact
networks- for a granular system, as soon as it has approached the unjamming
transition.Comment: 13 pages, 15 figures, soumis \`{a} Phys. Rev.
Recommended from our members
Improved electron-beam ion-trap lifetime measurement of the Ne8+ 1s2s3S1 level
An earlier electron-beam ion-trap (EBIT) lifetime measurement of the Ne8+ 1s2s3S1 level has been improved upon, reducing the uncertainties to less than the scatter in the existing theoretical calculations. The new result, 91.7±0.4 μs, agrees with the previous value, but is more precise by a factor of 4. The new value distinguishes among theoretical values, as agreement is obtained only with those calculations that employ "exact" nonrelativistic or relativistic wave functions. Routes to measurements with even higher accuracy are discussed
- …
