9,019 research outputs found

    The radial pulsation of AI Aurigae

    Get PDF
    We present an analysis of eleven years of Stromgren by photometry of the red semiregular variable star AI Aurigae. An early period determination of 63.9 days is confirmed by the long-term light curve behaviour. The light curve shows semi-regular changes with a mean period of 65 days reaching an amplitude of 0.6 mag in some cycles. The b-y colour changes perfectly parallel the V light curve, suggesting radial oscillation to be the main reason for the observed variations. We estimate the main characteristics of the star (mass, radius, effective temperature) that suggest radial pulsation in fundamental or first overtone mode.Comment: 7 pages, 3 figures, accepted for publication in A&

    Using the MitoB method to assess levels of reactive oxygen species in ecological studies of oxidative stress

    Get PDF
    In recent years evolutionary ecologists have become increasingly interested in the effects of reactive oxygen species (ROS) on the life-histories of animals. ROS levels have mostly been inferred indirectly due to the limitations of estimating ROS from in vitro methods. However, measuring ROS (hydrogen peroxide, H2O2) content in vivo is now possible using the MitoB probe. Here, we extend and refine the MitoB method to make it suitable for ecological studies of oxidative stress using the brown trout Salmo trutta as model. The MitoB method allows an evaluation of H2O2 levels in living organisms over a timescale from hours to days. The method is flexible with regard to the duration of exposure and initial concentration of the MitoB probe, and there is no transfer of the MitoB probe between fish. H2O2 levels were consistent across subsamples of the same liver but differed between muscle subsamples and between tissues of the same animal. The MitoB method provides a convenient method for measuring ROS levels in living animals over a significant period of time. Given its wide range of possible applications, it opens the opportunity to study the role of ROS in mediating life history trade-offs in ecological settings

    Spectroscopic binaries among Hipparcos M giants II. Binary frequency

    Full text link
    This paper is the second one in a series devoted to the study of properties of binaries involving M giants. The binary frequency of field M giants is derived and compared with the binary fraction of K giants. Diagrams of the CORAVEL spectroscopic parameter Sb (measuring the average line-width) vs. radial-velocity standard deviation for our samples are used to define appropriate binarity criteria. These then serve to extract the binarity fraction among the M giants. Comparison is made to earlier data on K giants binarity frequency. The Sb parameter is discussed in relation to global stellar parameters and the Sb vs. stellar radius relation is used to identify fast rotators. We find that the spectroscopic binary detection rate among field M giants, in a sample with a low number of velocity measurements (~2), unbiased toward earlier known binaries, is 6.3%. This is less than half of the analogous rate for field K giants, likely resulting from a real difference. This difference originates in the greater difficulty of finding binaries among M giants because of their smaller orbital velocity amplitudes and larger intrinsic jitter and in the different distributions of K and M giants in the eccentricity-period diagram. A larger detection rate was obtained in a smaller M giant sample with more radial velocity measurements per object: 11.1% confirmed plus 2.7% possible binaries. The CORAVEL spectroscopic parameter Sb was found to correlate better with the stellar radius than with either luminosity or effective temperature separately. Two outliers of the Sb vs. stellar radius relation, HD 190658 and HD 219654, have been recognized as fast rotators. The rotation is companion-induced, as both objects turn out to be spectroscopic binaries.Comment: 12 pages, 7 figures, accepted for publication in A&A, language editing changes onl

    Second-order corrections to neutrino two-flavor oscillation parameters in the wave packet approach

    Full text link
    We report about an analytic study involving the {\em intermediate} wave packet formalism for quantifying the physically relevant information which appear in the neutrino two-flavor conversion formula and help us to obtain more precise limits and ranges for neutrino flavor oscillation. By following the sequence of analytic approximations where we assume a strictly peaked momentum distribution and consider the second-order corrections in a power series expansion of the energy, we point out a {\em residual} time-dependent phase which, coupled with the {\em spreading/slippage} effects, can subtly modify the neutrino oscillation parameters and limits. Such second-order effects are usually ignored in the relativistic wave packet treatment, but they present an evident dependence on the propagation regime so that some small modifications to the oscillation pattern, even in the ultra-relativistic limit, can be quantified. These modifications are implemented in the confront with the neutrino oscillation parameter range (mass-squared difference \Delta m^{\2} and the mixing-angle θ\theta) where we assume the same wave packet parameters previously noticed in the literature in a kind of {\em toy model} for some reactor experiments. Generically speaking, our analysis parallels the recent experimental purposes which concern with higher precision parameter measurements. To summarize, we show that the effectiveness of a more accurate determination of \Delta m^{\2} and θ\theta depends on the wave packet width aa and on the averaged propagating energy flux Eˉ\bar{E} which still correspond to open variables for some classes of experiments. \Comment: 25 pages, 5 figure

    Candelilla wax edible coating with Flourensia cernua bioactives to prolong the quality of tomato fruits

    Get PDF
    The improvement of the postharvest quality of tomato fruits was evaluated using an edible coating functionalized with an Flourensia cernua extract evaluating the antifungal, structural, barrier, and optical properties. The formulation and evaluation of an edible coating and its application on tomato was evaluated using a response surface methodology to determine the ideal concentrations of candelilla wax, whey protein, and glycerol. Edible films showed good barrier properties, with water vapor permeability varying from 0.4350.404 g mm/m2 day kPa. The addition o F. cernua extract showed significant improvement in the transparency of films. The edible coating applied to tomato reduced weight and firmness loss. The sensory evaluation proved that the product obtained is acceptable for consumers. The edible coating added with F. cernua extract was the most effective in inhibiting the growth of pathogenic fungi and the visual appearance at the end of storage confirmed the beneficial effect of the edible coating.(undefined)info:eu-repo/semantics/publishedVersio

    Magnetic moments of the low-lying JP= 1/2−J^P=\,1/2^-, 3/2−3/2^- Λ\Lambda resonances within the framework of the chiral quark model

    Full text link
    The magnetic moments of the low-lying spin-parity JP=J^P= 1/2−1/2^-, 3/2−3/2^- Λ\Lambda resonances, like, for example, Λ(1405)\Lambda(1405) 1/2−1/2^-, Λ(1520)\Lambda(1520) 3/2−3/2^-, as well as their transition magnetic moments, are calculated using the chiral quark model. The results found are compared with those obtained from the nonrelativistic quark model and those of unitary chiral theories, where some of these states are generated through the dynamics of two hadron coupled channels and their unitarization

    Systematic study of optical potential strengths in reactions on Sn 120 involving strongly bound, weakly bound, and exotic nuclei

    Get PDF
    We present new experimental angular distributions for the elastic scattering of Li6+Sn120 at three bombarding energies. We include these data in a wide systematic involving the elastic scattering of He4,6,Li7, Be9,B10, and O16,18 projectiles on the same target at energies around the respective Coulomb barriers. Considering this data set, we report on optical model analyses based on the double-folding São Paulo potential. Within this approach, we study the sensitivity of the data fit to different models for the nuclear matter densities and to variations in the optical potential strengths.Fil: Alvarez, M. A. G.. Universidad de Sevilla; EspañaFil: Fernández García, J. P.. Universidad de Sevilla; EspañaFil: León García, J. L.. Universidad de Sevilla; EspañaFil: Rodríguez Gallardo, M.. Universidad de Sevilla; EspañaFil: Gasques, L. R.. Universidade de Sao Paulo; BrasilFil: Chamon, L. C.. Universidade de Sao Paulo; BrasilFil: Zagatto, V. A. B.. Universidade de Sao Paulo; BrasilFil: Lépine Szily, A.. Universidade de Sao Paulo; BrasilFil: Oliveira, J. R. B.. Universidade de Sao Paulo; BrasilFil: Scarduelli, V.. Universidade Federal Fluminense; BrasilFil: Carlson, B. V.. Instituto Tecnologico de Aeronautica.; BrasilFil: Casal, J.. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Arazi, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Torres, D. A.. Universidad Nacional de Colombia; ColombiaFil: Ramirez, F.. Universidad Nacional de Colombia; Colombi

    Spectroscopic binaries among Hipparcos M giants III. The eccentricity-period diagram and mass-transfer signatures

    Full text link
    This paper is the third one in a series devoted to studying the properties of binaries involving M giants. We use a new set of orbits to construct the first (e-logP) diagram of an extensive sample of M giant binaries, to obtain their mass-function distribution, and to derive evolutionary constraints for this class of binaries and related systems. The orbital properties of binaries involving M giants were analysed and compared with those of related families of binaries (K giants, post-AGB stars, barium stars, Tc-poor S stars). The orbital elements of post-AGB stars and M giants are not different, which may very indicate that, for the considered sample of post-AGB binaries, the post-AGB star left the AGB at quite an early stage (M4 or so). Neither are the orbital elements of post-mass-transfer binaries like barium stars very different from those of M giants, suggesting that the mass transfer did not alter the orbital elements much, contrary to current belief. Finally, we show that binary systems with e < 0.4 log P - 1 (with periods expressed in days) are predominantly post-mass-transfer systems, because (i) the vast majority of barium and S systems match this condition, and (ii) these systems have companion masses peaking around 0.6 solar mass, as expected for white dwarfs. The latter property has been shown to hold as well for open-cluster binaries involving K giants, for which a lower bound on the companion mass may easily be set.Comment: 14 pages, 12 figures, accepted for publication in A&A, language editing changes onl

    The Sensitivity of HAWC to High-Mass Dark Matter Annihilations

    Full text link
    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi- TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from non-luminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross-section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross-sections below thermal. HAWC should also be sensitive to non-thermal cross-sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross-section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained.Comment: 15 pages, 4 figures, version to be published in PR

    The clustering of ultra-high energy cosmic rays and their sources

    Full text link
    The sky distribution of cosmic rays with energies above the 'GZK cutoff' holds important clues to their origin. The AGASA data, although consistent with isotropy, shows evidence for small-angle clustering, and it has been argued that such clusters are aligned with BL Lacertae objects, implicating these as sources. It has also been suggested that clusters can arise if the cosmic rays come from the decays of very massive relic particles in the Galactic halo, due to the expected clumping of cold dark matter. We examine these claims and show that both are in fact not justified.Comment: 13 pages, 8 figures, version in press at Phys. Rev.
    • …
    corecore