515 research outputs found
Alfv\'en Reflection and Reverberation in the Solar Atmosphere
Magneto-atmospheres with Alfv\'en speed [a] that increases monotonically with
height are often used to model the solar atmosphere, at least out to several
solar radii. A common example involves uniform vertical or inclined magnetic
field in an isothermal atmosphere, for which the Alfv\'en speed is exponential.
We address the issue of internal reflection in such atmospheres, both for
time-harmonic and for transient waves. It is found that a mathematical boundary
condition may be devised that corresponds to perfect absorption at infinity,
and, using this, that many atmospheres where a(x) is analytic and unbounded
present no internal reflection of harmonic Alfv\'en waves. However, except for
certain special cases, such solutions are accompanied by a wake, which may be
thought of as a kind of reflection. For the initial-value problem where a
harmonic source is suddenly switched on (and optionally off), there is also an
associated transient that normally decays with time as O(t-1) or O(t-1 ln t),
depending on the phase of the driver. Unlike the steady-state harmonic
solutions, the transient does reflect weakly. Alfv\'en waves in the solar
corona driven by a finite-duration train of p-modes are expected to leave such
transients.Comment: Accepted by Solar Physic
Recommended from our members
Implementation research for the prevention of antimicrobial resistance and healthcare-associated infections; 2017 Geneva infection prevention and control (IPC)-think tank (part 1)
Background
Around 5–15% of all hospital patients worldwide suffer from healthcare-associated infections (HAIs), and years of excessive antimicrobial use in human and animal medicine have created emerging antimicrobial resistance (AMR). A considerable amount of evidence-based measures have been published to address these challenges, but the largest challenge seems to be their implementation.
Methods
In June 2017, a total of 42 experts convened at the Geneva IPC-Think Tank to discuss four domains in implementation science: 1) teaching implementation skills; 2) fostering implementation of IPC and antimicrobial stewardship (AMS) by policy making; 3) national/international actions to foster implementation skills; and 4) translational research bridging social sciences and clinical research in infection prevention and control (IPC) and AMR.
Results
Although neglected in the past, implementation skills have become a priority in IPC and AMS. They should now be part of any curriculum in health care, and IPC career paths should be created. Guidelines and policies should be aligned with each other and evidence-based, each document providing a section on implementing elements of IPC and AMS in patient care. International organisations should be advocates for IPC and AMS, framing them as patient safety issues and emphasizing the importance of implementation skills. Healthcare authorities at the national level should adopt a similar approach and provide legal frameworks, guidelines, and resources to allow better implementation of patient safety measures in IPC and AMS. Rather than repeating effectiveness studies in every setting, we should invest in methods to improve the implementation of evidence-based measures in different healthcare contexts. For this, we need to encourage and financially support collaborations between social sciences and clinical IPC research.
Conclusions
Experts of the 2017 Geneva Think Tank on IPC and AMS, CDC, and WHO agreed that sustained efforts on implementation of IPC and AMS strategies are required at international, country, and hospital management levels, to provide an adequate multimodal framework that addresses (not exclusively) leadership, resources, education and training for implementing IPC and AMS. Future strategies can build on this agreement to make strategies on IPC and AMS more effective
Transverse kink oscillations of expanding coronal loops
We investigate the nature of transverse kink oscillations of loops expanding
through the solar corona and how can oscillations be used to diagnose the
plasma parameters and the magnetic field. In particular, we aim to analyse how
the temporal dependence of the loop length (here modelling the expansion) will
affect the P1 /P2 period ratio of transverse loop oscillations.
Due to the uncertainty of the loop's shape through its expansion, we discuss
separately the case of the loop that maintains its initial semi-circular shape
and the case of the loop that from a semi-circular shape evolve into an
elliptical shape loop. The equations that describe the oscillations in
expanding flux tube are complicated due to the spatial and temporal dependence
of coefficients. Using the WKB approximation we find approximative values for
periods and their evolution, as well as the period ratio. For small values of
time (near the start of the expansion) we can employ a regular perturbation
method to find approximative relations for eigenfunctions and eigenfrequencies.
Using simple analytical and numerical methods we show that the period of
oscillations are affected by the rising of the coronal loop. The change in the
period due to the increase in the loop's length is more pronounced for those
loops that expand into a more structured (or cooler corona). The deviation of
periods will have significant implications in determining the degree of
stratification in the solar corona. The effect of expansion on the periods of
oscillations is considerable only in the process of expansion of the loop but
not when it reached its final stage
Podoconiosis in East and West Gojam Zones, Northern Ethiopia
Background: Podoconiosis is a neglected tropical disease (NTD) that is prevalent in red clay soil-covered highlands of tropical Africa, Central and South America, and northern India. It is estimated that up to one million cases exist in Ethiopia. This study aimed to estimate the prevalence of podoconiosis in East and West Gojam Zones of Amhara Region in northern Ethiopia. Methodology/Principal Findings: A cross-sectional household survey was conducted in Debre Eliyas and Dembecha woredas (districts) in East and West Gojam Zones, respectively. The survey covered all 17,553 households in 20 kebeles (administrative subunits) randomly selected from the two woredas. A detailed structured interview was conducted on 1,704 cases of podoconiosis identified in the survey. Results: The prevalence of podoconiosis in the population aged 15 years and above was found to be 3.3% (95% CI, 3.2% to 3.6%). 87% of cases were in the economically active age group (15–64 years). On average, patients sought treatment five years after the start of the leg swelling. Most subjects had second (42.7%) or third (36.1%) clinical stage disease, 97.9% had mossy lesions, and 53% had open wounds. On average, patients had five episodes of acute adenolymphangitis (ALA) per year and spent a total of 90 days per year with ALA. The median age of first use of shoes and socks were 22 and 23 years, respectively. More men than women owned more than one pair of shoes (61.1% vs. 50.5%; x2 = 11.6 p = 0.001). At the time of interview, 23.6% of the respondents were barefoot, of whom about two-thirds were women. Conclusions: This study showed high prevalence of podoconiosis and associated morbidities such as ALA, mossy lesions and open wounds in northern Ethiopia. Predominance of cases at early clinical stage of podoconiosis indicates the potential for reversing the swelling and calls for disease prevention interventions
Near-Limb Zeeman and Hanle Diagnostics
"Weak" magnetic-field diagnostics in faint objects near the bright solar disk
are discussed in terms of the level of non-object signatures, in particular, of
the stray light in telescopes. Calculated dependencies of the stray light
caused by diffraction at the 0.5-, 1.6-, and 4-meter entrance aperture are
presented. The requirements for micro-roughness of refractive and reflective
primary optics are compared. Several methods for reducing the stray light (the
Lyot coronagraphic technique, multiple stages of apodizing in the focal and
exit pupil planes, apodizing in the entrance aperture plane with a special
mask), and reducing the random and systematic errors are noted. An acceptable
level of stray light in telescopes is estimated for the V-profile recording
with a signal-to-noise ratio greater than three. Prospects for the limb
chromosphere magnetic measurements are indicated.Comment: 11 pages, 3 figure
Helioseismology, solar models and neutrino fluxes
We present our results concerning a systematical analysis of helioseismic
implications on solar structure and neutrino production. We find
Y, and
gr/cm. In the interval , the quantity is
determined with and accuracy of \permille~or better. At the solar center
still one has remarkable accuracy, . We compare the predictions
of recent solar models (standard and non-standard) with the helioseismic
results. By constructing helioseismically constrained solar models, the central
solar temperature is found to be K with a conservatively
estimated accuracy of 1.4%, so that the major unceratainty on neutrino fluxes
is due to nuclear cross section and not to solar inputs.Comment: 14 pages including 9 figures, LaTex file, espcrc2.sty is needed; to
appear in Nucl. Phys. B Proc. Suppl., Proceedings of TAUP97 conference,
Laboratori Nazionali del Gran Sasso, September 199
Observations of Coronal Mass Ejections with the Coronal Multichannel Polarimeter
The Coronal Multichannel Polarimeter (CoMP) measures not only the
polarization of coronal emission, but also the full radiance profiles of
coronal emission lines. For the first time, CoMP observations provide
high-cadence image sequences of the coronal line intensity, Doppler shift and
line width simultaneously in a large field of view. By studying the Doppler
shift and line width we may explore more of the physical processes of CME
initiation and propagation. Here we identify a list of CMEs observed by CoMP
and present the first results of these observations. Our preliminary analysis
shows that CMEs are usually associated with greatly increased Doppler shift and
enhanced line width. These new observations provide not only valuable
information to constrain CME models and probe various processes during the
initial propagation of CMEs in the low corona, but also offer a possible
cost-effective and low-risk means of space weather monitoring.Comment: 6 figures. Will appear in the special issue of Coronal Magnetism,
Sol. Phy
VFISV: Very Fast Inversion of the Stokes Vector for the Helioseismic and Magnetic Imager
In this paper we describe in detail the implementation and main properties of
a new inversion code for the polarized radiative transfer equation (VFISV: Very
Fast inversion of the Stokes vector). VFISV will routinely analyze pipeline
data from the Helioseismic and Magnetic Imager (HMI) on-board of the Solar
Dynamics Observatory (SDO). It will provide full-disk maps (40964096
pixels) of the magnetic field vector on the Solar Photosphere every 10 minutes.
For this reason VFISV is optimized to achieve an inversion speed that will
allow it to invert 16 million pixels every 10 minutes with a modest number
(approx. 50) of CPUs. Here we focus on describing a number of important
details, simplifications and tweaks that have allowed us to significantly speed
up the inversion process. We also give details on tests performed with data
from the spectropolarimeter on-board of the Hinode spacecraft.Comment: 23 pages, 9 figures (2 color). Submitted for publication to Solar
Physic
Nonlinear force-free and potential field models of active-region and global coronal fields during the Whole Heliospheric Interval
Between 2008/3/24 and 2008/4/2, the three active regions NOAA active regions
10987, 10988 and 10989 were observed daily by the Synoptic Optical Long-term
Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM) while they
traversed the solar disk. We use these measurements and the nonlinear
force-free magnetic field code XTRAPOL to reconstruct the coronal magnetic
field for each active region and compare model field lines with images from the
Solar Terrestrial RElations Observatory (STEREO) and Hinode X-ray Telescope
(XRT) telescopes. Synoptic maps made from continuous, round-the-clock Global
Oscillations Network Group (GONG) magnetograms provide information on the
global photospheric field and potential-field source-surface models based on
these maps describe the global coronal field during the Whole Heliospheric
Interval (WHI) and its neighboring rotations. Features of the modeled global
field, such as the coronal holes and streamer belt locations, are discussed in
comparison with extreme ultra-violet and coronagraph observations from STEREO.
The global field is found to be far from a minimum, dipolar state. From the
nonlinear models we compute physical quantities for the active regions such as
the photospheric magnetic and electric current fluxes, the free magnetic energy
and the relative helicity for each region each day where observations permit.
The interconnectivity of the three regions is addressed in the context of the
potential-field source-surface model. Using local and global quantities derived
from the models, we briefly discuss the different observed activity levels of
the regions.Comment: Accepted for publication in the Solar Physics Whole Heliospheric
Interval (WHI) topical issue. We had difficulty squeezing this paper into
arXiv's 15 Mb limit. The full paper is available here
ftp://gong2.nso.edu/dsds_user/petrie/PetrieCanouAmari.pd
Atmospheric Heating and Wind Acceleration: Results for Cool Evolved Stars based on Proposed Processes
A chromosphere is a universal attribute of stars of spectral type later than
~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae
binaries) show extended and highly turbulent chromospheres, which develop into
slow massive winds. The associated continuous mass loss has a significant
impact on stellar evolution, and thence on the chemical evolution of galaxies.
Yet despite the fundamental importance of those winds in astrophysics, the
question of their origin(s) remains unsolved. What sources heat a chromosphere?
What is the role of the chromosphere in the formation of stellar winds? This
chapter provides a review of the observational requirements and theoretical
approaches for modeling chromospheric heating and the acceleration of winds in
single cool, evolved stars and in eclipsing binary stars, including physical
models that have recently been proposed. It describes the successes that have
been achieved so far by invoking acoustic and MHD waves to provide a physical
description of plasma heating and wind acceleration, and discusses the
challenges that still remain.Comment: 46 pages, 9 figures, 1 table; modified and unedited manuscript;
accepted version to appear in: Giants of Eclipse, eds. E. Griffin and T. Ake
(Berlin: Springer
- …
