3,709 research outputs found

    Interference phenomena in the JP=1/2J^P=1/2^--wave in η\eta photoproduction

    Full text link
    The recent precise experimental results for the photoproduction of η\eta-mesons off the neutron measured with the Crystal Ball/TAPS calorimeter at the MAMI accelerator have been investigated in detail in the framework of the Bonn-Gatchina coupled channel model. The main result is that the narrow structure observed in the excitation function of γnnη\gamma n \rightarrow n\eta can be reproduced fully with a particular interference pattern in the JP=1/2J^P=1/2^- partial wave. Introduction of the narrow resonance N(1685)N(1685) with the properties reported in earlier publications deteriorates the quality of the fit.Comment: 10 pages, 13 figures, accepted for publication in EPJ

    Photoproduction of η\eta mesons off neutrons from a deuteron target

    Full text link
    A formalism is developed for the partial wave analysis of data on meson photoproduction off deuterons and applied to photoproduction of η\eta and π0\pi^0 mesons. Different interpretations of a dip-bump structure of the η\eta photoproduction cross section in the 1670 MeV region are presented and discussed. Helicity amplitudes for two low-mass S11S_{11} states are determined.Comment: 11 pages, 13 figure

    Elastic and thermodynamic properties of the shape-memory alloy AuZn

    Full text link
    The current work reports on the elastic shear moduli, internal friction, and the specific heat of the B2 cubic ordered alloy AuZn as a function of temperature. Measurements were made on single-crystal and polycrystalline samples using Resonant Ultrasound Spectroscopy (RUS), semi-adiabatic calorimetry and stress-strain measurements. Our results confirm that this alloy exhibits the shape-memory effect and a phase transition at 64.75 K that appears to be continuous (second-order) from the specific heat data. It is argued that the combination of equiatomic composition and a low transformation temperature constrain the chemical potential and its derivatives to exhibit behavior that lies at the borderline between that of a first-order (discontinuous) and a continuous phase transition. The acoustic dissipation does not peak at the transtion temperature as expected, but shows a maximum well into the low-temperature phase. The Debye temeprature value of 219 K, obtained from the low-temperature specific heat data is in favorable agreement with that determined from the acoustic data (207 K) above the transition.Comment: 25 pages, 6 figures, submitted to Phys. Rev.

    Field Theoretic Description of Ultrarelativistic Electron-Positron Plasmas

    Get PDF
    Ultrarelativistic electron-positron plasmas can be produced in high-intensity laser fields and play a role in various astrophysical situations. Their properties can be calculated using QED at finite temperature. Here we will use perturbative QED at finite temperature for calculating various important properties, such as the equation of state, dispersion relations of collective plasma modes of photons and electrons, Debye screening, damping rates, mean free paths, collision times, transport coefficients, and particle production rates, of ultrarelativistic electron-positron plasmas. In particular, we will focus on electron-positron plasmas produced with ultra-strong lasers.Comment: 13 pages, 7 figures, 1 table, published versio

    Emittance growth in linear induction accelerators

    Full text link
    The Dual-Axis Radiographic Hydrotest (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. On the DARHT Axis-II LIA we measure an emittance higher than predicted by theoretical simulations, and even though this axis produces sub-millimeter source spots, we are exploring ways to improve the emittance. Some of the possible causes for the discrepancy have been investigated using particle-in-cell (PIC) codes, although most of these are discounted based on beam measurements. The most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.Comment: 20th Int. Conf. on High-Power Particle Beams, Washington, DC, May, 201

    The Quark-Gluon-Plasma Liquid

    Full text link
    The quark-gluon plasma close to the critical temperature is a strongly interacting system. Using strongly coupled, classical, non-relativistic plasmas as an analogy, we argue that the quark-gluon plasma is in the liquid phase. This allows to understand experimental observations in ultrarelativistic heavy-ion collisions and to interpret lattice QCD results. It also supports the indications of the presence of a strongly coupled QGP in ultrarelativistic heavy-ion collisions.Comment: 8 pages, 2 figures, final version, to bepublished in J. Phys.

    Cherenkov radiation by particles traversing the background radiatio n

    Get PDF
    High energy particles traversing the Universe through the cosmic microwave backgroung radiation can, in principle, emit Cherenkov radiation. It is shown that the energy threshold for this radiation is extremely high and its intensity would be too low due to the low density of the "relic photons gas" and very weak interaction of two photons.Comment: 6 pages, LATEX, no Figs.; to be published in JETP Lett. 75 (N4) (2002

    The Chronicle of Alfonso III

    Get PDF

    Large harmonic softening of the phonon density of states of uranium

    Get PDF
    Phonon density-of-states curves were obtained from inelastic neutron scattering spectra from the three crystalline phases of uranium at temperatures from 50 to 1213 K. The alpha -phase showed an unusually large thermal softening of phonon frequencies. Analysis of the vibrational power spectrum showed that this phonon softening originates with the softening of a harmonic solid, as opposed to vibrations in anharmonic potentials. It follows that thermal excitations of electronic states are more significant thermodynamically than are the classical volume effects. For the alpha-beta and beta-gamma phase transitions, vibrational and electronic entropies were comparable

    Microstructural strain energy of α-uranium determined by calorimetry and neutron diffractometry

    Get PDF
    The microstructural contribution to the heat capacity of α-uranium was determined by measuring the heat-capacity difference between polycrystalline and single-crystal samples from 77 to 320 K. When cooled to 77 K and then heated to about 280 K, the uranium microstructure released (3±1) J/mol of strain energy. On further heating to 300 K, the microstructure absorbed energy as it began to redevelop microstrains. Anisotropic strain-broadening parameters were extracted from neutron-diffraction measurements on polycrystals. Combining the strain-broadening parameters with anisotropic elastic constants from the literature, the microstructural strain energy is predicted in the two limiting cases of statistically isotropic stress and statistically isotropic strain. The result calculated in the limit of statistically isotropic stress was (3.7±0.5) J/mol K at 77 K and (1±0.5) J/mol at room temperature. In the limit of statistically isotropic strain, the values were (7.8±0.5) J/mol K at 77 K and (4.5±0.5) J/mol at room temperature. In both cases the changes in the microstructural strain energy showed good agreement with the calorimetry
    corecore