19 research outputs found

    Facile preparation of a cellulose microfibers–exfoliated graphite composite: a robust sensor for determining dopamine in biological samples

    Get PDF
    © 2017, Springer Science+Business Media B.V. A simple and robust dopamine (DA) sensor was developed using a cellulose microfibers (CMF)–exfoliated graphite composite-modified screen-printed carbon electrode (SPCE) for the first time. The graphite-CMF composite was prepared by sonication of pristine graphite in CMF solution and was characterized by high-resolution scanning electron microscopy, Fourier transform, infrared, and Raman spectroscopy. The cyclic voltammetry results reveal that the graphite-CMF composite modified SPCE has superior electrocatalytic activity against oxidation of dopamine than SPCE modified with pristine graphite and CMF. The presence of large edge plane defects on exfoliated graphite and abundant oxygen functional groups of CMF enhance electrocatalytic activity and decrease potential to oxidize DA. Differential pulse voltammetry was used to quantify DA using the graphite-CMF composite-modified SPCE and demonstrated a linear response for DA detection in the range of 0.06–134.5 ”M. The sensor shows a detection limit at 10 nM with an appropriate sensitivity and displays appropriate recovery of DA in human serum samples with good repeatability. Sensor selectivity is demonstrated in the presence of 50-fold concentrations of potentially active interfering compounds including ascorbic acid, uric acid, and dihydroxybenzene isomers

    Hydrothermal Synthesis of Cr2Se3 Hexagons for Sensitive and Lowlevel Detection of 4-Nitrophenol in Water

    Get PDF
    We report a simple hydrothermal method used for the synthesis of Cr2Se3 hexagons (h-Cr2Se3) and its application towards electrochemical sensing of 4-nitrophenol (4-NP). The formation of h-Cr2Se3 was confrmed by using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray difraction, and X-ray photoelectron spectroscopy. The electrochemical activity of the h-Cr2Se3 modifed screen-printed carbon electrode (SPCE) towards 4-NP was studied using cyclic voltammetry (CV) and amperometric i-t techniques. Typically,the obtained results were compared with those for a bare SPCE. The CV result clearly reveals that h-Cr2Se3 modifed SPCE has higher catalytic activity towards reduction of 4-NP than bare SPCE. Hence, h-Cr2Se3 modifed SPCE was concluded as a viable sensor for sensitive determination of 4-NP. Under optimized conditions, h-Cr2Se3 modifed SPCE demonstrates the excellent capacity to detect the 4-NP in a linear range from 0.05”M to 908.0”M. The LOD and sensitivity in detection of 4-NP were determined at 0.01”M and 1.24”A”M−1 cm−2 respectively. The sensor is highly selective and stable and shows reproducible recovery of 4-NP in domestic supply and river water samples

    Selective Colorimetric Detection of Nitrite in Water using Chitosan Stabilized Gold Nanoparticles Decorated Reduced Graphene oxide

    Get PDF
    © 2017 The Author(s). Excess nitrite (NO 2 - ) concentrations in water supplies is considered detrimental to the environment and human health, and is associated with incidence of stomach cancer. In this work, the authors describe a nitrite detection system based on the synthesis of gold nanoparticles (AuNPs) on reduced graphene oxide (rGO) using an aqueous solution of chitosan and succinic acid. The AuNPs-rGO nanocomposite was confirmed by different physicochemical characterization methods including transmission electron microscopy, elemental analysis, X-ray diffraction, UV-visible (UV-vis) and Fourier transform infrared spectroscopy. The AuNPs-rGO nanocomposite was applicable to the sensitive and selective detection of NO 2 - with increasing concentrations quantifiable by UV-vis spectroscopy and obvious to the naked eye. The color of the AuNPs-rGO nanocomposite changes from wine red to purple with the addition of different concertation of NO 2 - . Therefore, nitrite ion concentrations can be quantitatively detected using AuNPs-rGO sensor with UV-vis spectroscopy and estimated with the naked eye. The sensor is able to detect NO 2 - in a linear response ranging from 1 to 20 ΌM with a detection limit of 0.1 ΌM by spectrophotometric method. The as-prepared AuNPs-rGO nanocomposite shows appropriate selectivity towards NO 2 - in the presence of potentially interfering metal anions

    A novel Laccase biosensor based on laccase immobilized graphene-cellulose microfiber composite modified screen-printed carbon electrode for sensitive determination of catechol

    Get PDF
    © The Author(s) 2017. In the present work, we demonstrate the fabrication of laccase biosensor to detect the catechol (CC) using laccase immobilized on graphene-cellulose microfibers (GR-CMF) composite modified screen printed carbon electrode (SPCE). The direct electrochemical behavior of laccase was investigated using laccase immobilized different modified SPCEs, such as GR/SPCE, CMF/SPCE and GR-CMF/SPCE. Compared with laccase immobilized GR and CMF modified SPCEs, a well-defined redox couple of CuI/CuIIfor laccase was observed at laccase immobilized GR-CMF composite modified SPCE. Cyclic voltammetry results show that the as-prepared biosensor has 7 folds higher catalytic activity with lower oxidation potential towards CC than SPCE modified with GR-CMF composite. Under optimized conditions, amperometric i-t method was used for the quantification of CC, and the amperometric response of the biosensor was linear over the concertation of CC ranging from 0.2 to 209.7 ΌM. The sensitivity, response time and the detection limit of the biosensor for CC is 0.932 ΌMΌA-1 cm-2, 2 s and 0.085 ΌM, respectively. The biosensor has high selectivity towards CC in the presence of potentially active biomolecules and phenolic compounds. The biosensor also accessed for the detection of CC in different water samples and shows good practicality with an appropriate repea

    Hierarchical 3D Architectured Ag Nanowires Shelled with NiMn-Layered Double Hydroxide as an Efficient Bifunctional Oxygen Electrocatalyst

    No full text
    Herein, we report hierarchical 3D NiMn-layered double hydroxide (NiMn-LDHs) shells grown on conductive silver nanowire (Ag NWs) cores as efficient, low-cost, and durable oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) bifunctional electrocatalysts for metal–air batteries. The hierarchical 3D architectured Ag NW@NiMn-LDH catalysts exhibit superb OER/ORR activities in alkaline conditions. The outstanding bifunctional activities of Ag NW@NiMn-LDHs are essentially attributed to increasing both site activity and site populations. The synergistic contributions from the hierarchical 3D open-pore structure of the LDH shells, improved electrical conductivity, and small thickness of the LDHs shells are associated with more accessible site populations. Moreover, the charge transfer between Ag cores and metals of LDH shells and the formation of defective and distorted sites (less coordinated Ni and Mn sites) strongly enhance the site activity. Thus, Ag NW@NiMn-LDH hybrids exhibit a 0.75 V overvoltage difference between ORR and OER with excellent durability for 30 h, demonstrating the distinguished bifunctional electrocatalyst reported to date. Interestingly, the homemade rechargeable Zn–air battery using the hybrid Ag NW@NiMn-LDHs (1:2) catalyst as the air electrode exhibits a charge–discharge voltage gap of ∌0.77 V at 10 mA cm–2 and shows excellent cycling stability. Thus, the concept of the hierarchical 3D architecture of Ag NW@NiMn-LDHs considerably advances the practice of LDHs toward metal–air batteries and oxygen electrocatalysts

    Integrated porous cobalt oxide/cobalt anode with micro- and nano-pores for lithium ion battery

    No full text
    An integrated porous cobalt-oxide/cobalt (Co3O4/CoO/Co) anode was prepared by facile processes, including directional freeze casting of a Co foam and its partial thermal oxidation to Co3O4/CoO, for use as a high-capacity anode material for lithium-ion batteries (LIBs). The thermal oxidation created a nanostructured oxide layer, 0.4 ÎŒm in thickness, on the surface of aligned, interconnected Co lamellae comprising the foam. In this electrode design, the Co foam was used as the current collector, and the nanowall-like Co oxide (CoO and Co3O4) layers acted as the anode that reacted with lithium ions during discharging and charging. The integrated porous Co3O4/CoO/Co anode exhibits highly reversible capacity of 989 mAh g−1 after 50 cycles with an coulombic efficiency of 99.4%, which is superior to that of the conventional Co foil anode (245 mAh g−1). The integrated porous Co3O4/CoO/Co architecture demonstrated in this study has promising potential applications for self-supporting advanced anodes with tailored macro- and microstructures for high capacity LIBs11Nsci
    corecore