10 research outputs found

    Clinical and radiological characteristics of tumefactive demyelinating lesions: follow-up study

    No full text
    Background: Demyelinating lesions over 20 mm in size, referred to as tumefactive demyelinating lesions, can be misdiagnosed as being either a tumor or an abscess. Although some radiological characteristics can help make a differential diagnosis easier, a cerebral biopsy may still be necessary

    Clinical and radiological characteristics of tumefactive demyelinating lesions: follow-up study

    No full text
    Background: Demyelinating lesions over 20 mm in size, referred to as tumefactive demyelinating lesions, can be misdiagnosed as being either a tumor or an abscess. Although some radiological characteristics can help make a differential diagnosis easier, a cerebral biopsy may still be necessary

    Potential of Natural Biomaterials in Nano-scale Drug Delivery

    No full text
    Background: The usage of natural biomaterials or naturally derived materials intended for interface with biological systems has steadily increased in response to the high demand of amenable materials, which are suitable for purpose, biocompatible and biodegradable. There are many naturally derived polymers which overlap in terms of purpose as biomaterials but are equally diverse in their applications. Methods: This review examines the applications of the following naturally derived polymers; hyaluronic acid, silk fibroin, chitosan, collagen and tamarind polysaccharide (TSP); further focusing on the biomedical applications of each as well as emphasising on individual novel applications. Results: Each of the polymer was found to demonstrate a wide variety of successful biomedical applications fabricated as wound dressings, scaffolds, matrices, films, sponges, implants or hydrogels to suit the therapeutic need. Interestingly, blending and amelioration of polymer structures were but two of a selection of strategies to modify the functionality of the polymers to suit the purpose. Further these polymers have shown promise to deliver small molecule drugs, proteins and genes as nano-scale delivery systems. Conclusion: The review highlights the breadth and depth of applications of the aforementioned polymers as biomaterials. Hyaluronic acid, silk fibroin, chitosan, collagen and TSP have been successfully utilised as biomaterials in the subfields of implant enhancement, wound management, drug delivery, tissue engineering and nanotechnology. Whilst there are a number of associated advantages (i.e. biodegradability, biocompatibility, non-toxic, non-antigenic as well as amenability) the select disadvantages of each individual polymer provide significant scope for their further exploration and overcoming challenges like feasibility of mass production at a relatively low cost

    Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease

    No full text
    corecore