12,994 research outputs found
Phase Coexistence Near a Morphotropic Phase Boundary in Sm-doped BiFeO3 Films
We have investigated heteroepitaxial films of Sm-doped BiFeO3 with a
Sm-concentration near a morphotropic phase boundary. Our high-resolution
synchrotron X-ray diffraction, carried out in a temperature range of 25C to
700C, reveals substantial phase coexistence as one changes temperature to
crossover from a low-temperature PbZrO3-like phase to a high-temperature
orthorhombic phase. We also examine changes due to strain for films greater or
less than the critical thickness for misfit dislocation formation.
Particularly, we note that thicker films exhibit a substantial volume collapse
associated with the structural transition that is suppressed in strained thin
films
Observational Signatures of Simulated Reconnection Events in the Solar Chromosphere and Transition Region
We present the results of numerical simulations of wave-induced magnetic
reconnection in a model of the solar atmosphere. In the magnetic field geometry
we study in this article, the waves, driven by a monochromatic piston and a
driver taken from Hinode observations, induce periodic reconnection of the
magnetic field, and this reconnection appears to help drive long-period
chromospheric jets. By synthesizing observations for a variety of wavelengths
that are sensitive to a wide range of temperatures, we shed light on the often
confusing relationship between the plethora of jet-like phenomena in the solar
atmosphere, e.g., explosive events, spicules, blinkers, and other phenomena
thought to be caused by reconnection.Comment: 13 pages, 22 figures. Submitted to The Astrophysical Journa
Finite temperature properties of the triangular lattice t-J model, applications to NaCoO
We present a finite temperature () study of the t-J model on the
two-dimensional triangular lattice for the negative hopping , as relevant
for the electron-doped NaCoO (NCO). To understand several aspects of
this system, we study the -dependent chemical potential, specific heat,
magnetic susceptibility, and the dynamic Hall-coefficient across the entire
doping range. We show systematically, how this simplest model for strongly
correlated electrons describes a crossover as function of doping () from a
Pauli-like weakly spin-correlated metal close to the band-limit (density )
to the Curie-Weiss metallic phase () with pronounced
anti-ferromagnetic (AFM) correlations at low temperatures and Curie-Weiss type
behavior in the high-temperature regime. Upon further reduction of the doping,
a new energy scale, dominated by spin-interactions () emerges (apparent both
in specific heat and susceptibility) and we identify an effective interaction
, valid across the entire doping range. This is distinct from
Anderson's formula, as we choose here , hence the opposite sign of the
usual Nagaoka-ferromagnetic situation. This expression includes the subtle
effect of weak kinetic AFM - as encountered in the infinitely correlated
situation (). By explicit computation of the Kubo-formulae, we
address the question of practical relevance of the high-frequency expression
for the Hall coefficient . We hope to clarify some open questions
concerning the applicability of the t-J model to real experimental situations
through this study
Precise Estimation of Cosmological Parameters Using a More Accurate Likelihood Function
The estimation of cosmological parameters from a given data set requires a
construction of a likelihood function which, in general, has a complicated
functional form. We adopt a Gaussian copula and constructed a copula likelihood
function for the convergence power spectrum from a weak lensing survey. We show
that the parameter estimation based on the Gaussian likelihood erroneously
introduces a systematic shift in the confidence region, in particular for a
parameter of the dark energy equation of state w. Thus, the copula likelihood
should be used in future cosmological observations.Comment: 5 pages, 3 figures. Maches version published by the Physical Review
Letter
Quantum filter for non-local polarization properties of photonic qubits
We present an optical filter that transmits photon pairs only if they share
the same horizontal or vertical polarization, without decreasing the quantum
coherence between these two possibilities. Various applications for
entanglement manipulations and multi-photon qubits are discussed.Comment: 7 pages, including one figure, short discussion of error sources
adde
Zel'dovich-Starobinsky Effect in Atomic Bose-Einstein Condensates: Analogy to Kerr Black Hole
We consider circular motion of a heavy object in an atomic Bose-Einstein
condensate (BEC) at . Even if the linear velocity of the object is
smaller than the Landau critical velocity, the object may radiate
quasiparticles and thus experience the quantum friction. The radiation process
is similar to Zel'dovich-Starobinskii (ZS) effect -- the radiation by a
rotating black hole. This analogy emerges when one introduces the effective
acoustic metric for quasiparticles. In the rotating frame this metric has an
ergosurface, which is similar to the ergosurface in the metric of a rotating
black hole. In a finite size BEC, the quasiparticle creation takes place when
the ergosurface is within the condensate and occurs via quantum tunneling from
the object into the ergoregion. The dependence of the radiation rate on the
position of the ergosurface is investigated.Comment: 6 pages, 3 figures,submitted to JLT
Granular Scale Magnetic Flux Cancellations in the Photosphere
We investigate the evolution of 5 granular-scale magnetic flux cancellations
just outside the moat region of a sunspot by using accurate spectropolarimetric
measurements and G-band images with the Solar Optical Telescope aboard Hinode.
The opposite polarity magnetic elements approach a junction of the
intergranular lanes and then they collide with each other there. The
intergranular junction has strong red shifts, darker intensities than the
regular intergranular lanes, and surface converging flows. This clearly
confirms that the converging and downward convective motions are essential for
the approaching process of the opposite-polarity magnetic elements. However,
motion of the approaching magnetic elements does not always match with their
surrounding surface flow patterns in our observations. This suggests that, in
addition to the surface flows, subsurface downward convective motions and
subsurface magnetic connectivities are important for understanding the approach
and collision of the opposite polarity elements observed in the photosphere. We
find that the horizontal magnetic field appears between the canceling opposite
polarity elements in only one event. The horizontal fields are observed along
the intergranular lanes with Doppler red shifts. This cancellation is most
probably a result of the submergence (retraction) of low-lying photospheric
magnetic flux. In the other 4 events, the horizontal field is not observed
between the opposite polarity elements at any time when they approach and
cancel each other. These approaching magnetic elements are more concentrated
rather than gradually diffused, and they have nearly vertical fields even while
they are in contact each other. We thus infer that the actual flux cancellation
is highly time dependent events at scales less than a pixel of Hinode SOT
(about 200 km) near the solar surface.Comment: Accepted for publication in the Astrophysical Journa
Magnetic-field enhanced aniferromagnetism in non-centrosymmetric heavy-fermion superconductor CePtSi
The effect of magnetic field on the static and dynamic spin correlations in
the non-centrosymmetric heavy-fermion superconductor CePtSi was
investigated by neutron scattering. The application of a magnetic field B
increases the antiferromagnetic (AFM) peak intensity. This increase depends
strongly on the field direction: for B[0 0 1] the intensity
increases by a factor of 4.6 at a field of 6.6 T, which corresponds to more
than a doubling of the AFM moment, while the moment increases by only 10 % for
B[1 0 0] at 5 T. This is in strong contrast to the inelastic
response near the antiferromagnetic ordering vector, where no marked field
variations are observed for B[0 0 1] up to 3.8 T. The results
reveal that the AFM state in CePtSi, which coexists with superconductivity,
is distinctly different from other unconventional superconductors.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev.
An Analytic Approach to the Wave Packet Formalism in Oscillation Phenomena
We introduce an approximation scheme to perform an analytic study of the
oscillation phenomena in a pedagogical and comprehensive way. By using Gaussian
wave packets, we show that the oscillation is bounded by a time-dependent
vanishing function which characterizes the slippage between the mass-eigenstate
wave packets. We also demonstrate that the wave packet spreading represents a
secondary effect which plays a significant role only in the non-relativistic
limit. In our analysis, we note the presence of a new time-dependent phase and
calculate how this additional term modifies the oscillating character of the
flavor conversion formula. Finally, by considering Box and Sine wave packets we
study how the choice of different functions to describe the particle
localization changes the oscillation probability.Comment: 16 pages, 7 figures, AMS-Te
- …
