840 research outputs found

    Relationship between Friend virus and an associated lymphatic leukaemia virus.

    Get PDF
    virus into rats (Mirand and Grace, 1962; Dawson, Rose and Fieldsteel, 1966) an

    Shear wave elastography and shear wave dispersion imaging in primary biliary cholangitis—a pilot study

    Get PDF
    Background: Primary biliary cholangitis (PBC) is a chronic liver disease that can lead to liver fibrosis and cirrhosis. Two-dimensional shear wave elastography (2D-SWE) is a modern technique for fibrosis assessment. However, data regarding its performance in PBC is sparse. We aimed to characterize severity of liver disease in PBC patients using non-invasive 2D-SWE and the new methods of attenuation imaging (ATI) and shear wave dispersion imaging (SWD). Methods: Twenty two PBC patients were examined with 2D-SWE, SWD and ATI, alongside established non-invasive fibrosis and steatosis assessment methods as well as liver function tests. Results: Median 2D-SWE values were 1.48 m/S (range, 1.14-2.13 m/S) and 6.7 kPa (range, 3.8-14.7 kPa), respectively. Median SWD, ATI, transient elastography (TE) and controlled attenuation parameter (CAP) values were 13.9 m/S/ kHz (range, 11.6-21 m/S/kHz), 0.57 dB/cm/MHz (range, 0.5-0.68 dB/cm/MHz), 7 kPa (range, 3.7-14.6 kPa), and 208 dB/m (range, 107-276 dB/m), respectively. 2D-SWE displayed a significant correlation with spleen length, platelet count, non-invasive fibrosis scores (FIB-4, APRI) and with TE. SWD correlated with alkaline phosphatase (ALP) levels, which is a prognostic marker in PBC. Conclusions: Our findings add further evidence that 2D-SWE is a reliable method for fibrosis assessment in PBC. Even though the cohort size was small, the correlation of SWD with the prognostic marker ALP suggests a potentially valuable role of this new non-invasive method in evaluating liver disease activity in PBC

    Genomic architecture of potato resistance to Synchytrium endobioticum disentangled using SSR markers and the 8.3k SolCAP SNP genotyping array

    No full text
    BACKGROUND: The soil borne, obligate biotrophic fungus Synchytrium endobioticum causes tumor-like tissue proliferation (wart) in potato tubers and thereby considerable crop damage. Chemical control is not effective and unfriendly to the environment. S. endobioticum is therefore a quarantined pathogen. The emergence of new pathotypes of the fungus aggravate this agricultural problem. The best control of wart disease is the cultivation of resistant varieties. Phenotypic screening for resistant cultivars is however time, labor and material intensive. Breeding for resistance would therefore greatly benefit from diagnostic DNA markers that can be applied early in the breeding cycle. The prerequisite for the development of diagnostic DNA markers is the genetic dissection of the factors that control resistance to S. endobioticum in various genetic backgrounds of potato. RESULTS: Progeny of a cross between a wart resistant and a susceptible tetraploid breeding clone was evaluated for resistance to S. endobioticum pathotypes 1, 2, 6 and 18 most relevant in Europe. The same progeny was genotyped with 195 microsatellite and 8303 single nucleotide polymorphism (SNP) markers. Linkage analysis identified the multi-allelic locus Sen1/RSe-XIa on potato chromosome XI as major factor for resistance to all four S. endobioticum pathotypes. Six additional, independent modifier loci had smaller effects on wart resistance. Combinations of markers linked to Sen1/RSe-XIa resistance alleles with one to two additional markers were sufficient for obtaining high levels of resistance to S. endobioticum pathotypes 1, 2, 6 and 18 in the analyzed genetic background. CONCLUSIONS: Potato resistance to S. endobioticum is oligogenic with one major and several minor resistance loci. It is composed of multiple alleles for resistance and susceptibility that originate from multiple sources. The genetics of resistance to S. endobioticum varies therefore between different genetic backgrounds. The DNA markers described in this paper are the starting point for pedigree based selection of cultivars with high levels of resistance to S. endobioticum pathotypes 1, 2, 6 and 18. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12863-015-0195-y) contains supplementary material, which is available to authorized users

    The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases.

    Get PDF
    The systemic and organ-specific human fibrotic disorders collectively represent one of the most serious health problems world-wide causing a large proportion of the total world population mortality. The molecular pathways involved in their pathogenesis are complex and despite intensive investigations have not been fully elucidated. Whereas chronic inflammatory cell infiltration is universally present in fibrotic lesions, the central role of monocytes and macrophages as regulators of inflammation and fibrosis has only recently become apparent. However, the precise mechanisms involved in the contribution of monocytes/macrophages to the initiation, establishment, or progression of the fibrotic process remain largely unknown. Several monocyte and macrophage subpopulations have been identified, with certain phenotypes promoting inflammation whereas others display profibrotic effects. Given the unmet need for effective treatments for fibroproliferative diseases and the crucial regulatory role of monocyte/macrophage subpopulations in fibrogenesis, the development of therapeutic strategies that target specific monocyte/macrophage subpopulations has become increasingly attractive. We will provide here an overview of the current understanding of the role of monocyte/macrophage phenotype subpopulations in animal models of tissue fibrosis and in various systemic and organ-specific human fibrotic diseases. Furthermore, we will discuss recent approaches to the design of effective anti-fibrotic therapeutic interventions by targeting the phenotypic differences identified between the various monocyte and macrophage subpopulations

    The role of microbiota in primary sclerosing cholangitis and related biliary malignancies

    Get PDF
    Primary sclerosing cholangitis (PSC) is an immune-related cholangiopathy characterized by biliary inflammation, cholestasis, and multifocal bile duct strictures. It is associated with high rates of progression to end-stage liver disease as well as a significant risk of cholangiocarcinoma (CCA), gallbladder cancer, and colorectal carcinoma. Currently, no effective medical treatment with an impact on the overall survival is available, and liver transplantation is the only curative treatment option. Emerging evidence indicates that gut microbiota is associated with disease pathogenesis. Several studies analyzing fecal and mucosal samples demonstrate a distinct gut microbiome in individuals with PSC compared to healthy controls and individuals with inflammatory bowel disease (IBD) without PSC. Experimental mouse and observational human data suggest that a diverse set of microbial functions may be relevant, including microbial metabolites and bacterial processing of pharmacological agents, bile acids, or dietary compounds, altogether driving the intrahepatic inflammation. Despite critical progress in this field over the past years, further functional characterization of the role of the microbiota in PSC and related malignancies is needed. In this review, we discuss the available data on the role of the gut microbiome and elucidate important insights into underlying pathogenic mechanisms and possible microbe-altering interventions

    Identification and reproducibility of diagnostic DNA markers for tuber starch and yield optimization in a novel association mapping population of potato (Solanum tuberosum L.)

    No full text
    KEY MESSAGE: SNPs in candidate genesPain-1,InvCD141(invertases),SSIV(starch synthase),StCDF1(transcription factor),LapN(leucine aminopeptidase), and cytoplasm type are associated with potato tuber yield, starch content and/or starch yield. ABSTRACT: Tuber yield (TY), starch content (TSC), and starch yield (TSY) are complex characters of high importance for the potato crop in general and for industrial starch production in particular. DNA markers associated with superior alleles of genes that control the natural variation of TY, TSC, and TSY could increase precision and speed of breeding new cultivars optimized for potato starch production. Diagnostic DNA markers are identified by association mapping in populations of tetraploid potato varieties and advanced breeding clones. A novel association mapping population of 282 genotypes including varieties, breeding clones and Andean landraces was assembled and field evaluated in Northern Spain for TY, TSC, TSY, tuber number (TN) and tuber weight (TW). The landraces had lower mean values of TY, TW, TN, and TSY. The population was genotyped for 183 microsatellite alleles, 221 single nucleotide polymorphisms (SNPs) in fourteen candidate genes and eight known diagnostic markers for TSC and TSY. Association test statistics including kinship and population structure reproduced five known marker–trait associations of candidate genes and discovered new ones, particularly for tuber yield and starch yield. The inclusion of landraces increased the number of detected marker–trait associations. Integration of the present association mapping results with previous QTL linkage mapping studies for TY, TSC, TSY, TW, TN, and tuberization revealed some hot spots of QTL for these traits in the potato genome. The genomic positions of markers linked or associated with QTL for complex tuber traits suggest high multiplicity and genome wide distribution of the underlying genes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00122-016-2665-7) contains supplementary material, which is available to authorized users

    Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease

    Get PDF
    The oomycete Phytophthora infestans causes late blight of potato, which can completely destroy the crop. Therefore, for the past 160 years, late blight has been the most important potato disease worldwide. The identification of cultivars with high and durable field resistance to P. infestans is an objective of most potato breeding programs. This type of resistance is polygenic and therefore quantitative. Its evaluation requires multi-year and location trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resistance to late blight not compromised by late maturity is very limited. It is however essential for developing diagnostic DNA markers that facilitate the efficient combination of superior resistance alleles in improved cultivars. We used association genetics in a population of 184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs) that are associated with maturity corrected resistance (MCR) to late blight. The population was genotyped for almost 9000 SNPs from three different sources. The first source was candidate genes specifically selected for their function in the jasmonate pathway. The second source was novel candidate genes selected based on comparative transcript profiling (RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P. infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array available in potato for genome wide association studies (GWAS). Twenty seven SNPs from all three sources showed robust association with MCR. Some of those were located in genes that are strong candidates for directly controlling quantitative resistance, based on functional annotation. Most important were: a lipoxygenase (jasmonate pathway), a 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate pathway), a P450 protein (terpene biosynthesis), a transcription factor and a homolog of a major gene for resistance to P. infestans from the wild potato species Solanum venturii. The candidate gene approach and GWAS complemented each other as they identified different genes. The results of this study provide new insight in the molecular genetic basis of quantitative resistance in potato and a toolbox of diagnostic SNP markers for breeding applications.</p
    corecore