2,887 research outputs found

    Penetration depth study of LaOs4_4Sb12_{12}: Multiband s-wave superconductivity

    Full text link
    We measured the magnetic penetration depth λ(T)\lambda(T) in single crystals of LaOs4_{4}Sb12_{12} (TcT_c=0.74 K) down to 85 mK using a tunnel diode oscillator technique. The observed low-temperature exponential dependence indicates a s-wave gap. Fitting the low temperature data to BCS s-wave expression gives the zero temperature gap value Δ(0)=(1.34±0.07)kBTc\Delta (0)= (1.34 \pm 0.07) k_B T_c which is significantly smaller than the BCS value of 1.76kBTck_B T_c. In addition, the normalized superfluid density ρ(T)\rho(T) shows an unusually long suppression near TcT_c, and are best fit by a two-band s-wave model.Comment: 5 pages, 2 figure

    The level of Marzano higher-order thinking skills among polytechnic students

    Get PDF
    This study aims to identify polytechnic students' level of Marzano Higher-Order Thinking Skills (HOTS) based on two dimensions, 'Extension and Refinement of Knowledge' and 'Meaningful Use of Knowledge,' and to analyze the difference in the students' level of Marzano HOTS based on these two dimensions depending on the students' demographic factors. This study design was a survey using quantitative methods. A total of 313 students were randomly selected as the survey sample. A questionnaire in the form of closed-ended questions was used as the research instrument. Data were analyzed using frequency percentage and MANOVA test. The findings showed no significant differences in the eight HOTS in the dimension of 'Extension and Refinement of Knowledge' with the gender and socio-economic status (SES) factors. However, there were significant differences in the eight HOTS with the academic achievement factor. Meanwhile, based on the dimension of 'Meaningful Use of Knowledge,' the findings showed no significant differences in the five HOTS in this dimension with the gender and academic achievement factors. The paper includes implications of the Higher-Order Thinking Skills (HOTS) for students to improve their academic performance. In future research, the authors can further identify university students' HOTS levels in the technical area

    Objective sleep patterns and validity of self-reported sleep monitoring across different playing levels in rugby union

    Get PDF
    Background: Growing evidence highlights that elite rugby union players experience poor sleep quality and quantity which can be detrimental for performance. Objectives: This study aimed to i) compare objective sleep measures of rugby union players between age categories over a one week period, and ii) compare self-reported measures of sleep to wristwatch actigraphy as the criterion. Methods: Two hundred and fifty-three nights of sleep were recorded from 38 players representing four different age groups (i.e. under 16, under 18, senior academy, elite senior) in a professional rugby union club in the United Kingdom (UK). Linear mixed models and magnitude-based decisions were used for analysis. Results: The analysis of sleep schedules showed that U16 players went to bed and woke up later than their older counterparts (small differences). In general, players obtained seven hours of sleep per night, with trivial or unclear differences between age groups. The validity analysis highlighted a large relationship between objective and subjective sleep measures for bedtime (r = 0.56 [0.48 to 0.63]), and get up time (r = 0.70 [0.63 to 0.75]). A large standardised typical error (1.50 [1.23 to 1.88]) was observed for total sleep time. Conclusion: This study highlights that differences exist in sleep schedules between rugby union players in different age categories that should be considered when planning training. Additionally, self-reported measures overestimated sleep parameters. Coaches should consider these results to optimise sleep habits of their players and should be careful with self-reported sleep measures

    Baseline anticholinergic burden from medications predicts incident fatal and non-fatal stroke in the EPIC-Norfolk general population.

    Get PDF
    BACKGROUND: Stroke is primarily a disease of older age, with a substantial impact on global mortality and morbidity. Medications with anticholinergic effects are widely used, but no studies have been conducted to examine the relationship between anticholinergic burden (ACB) and stroke in a general population. METHOD: The sample was drawn from the EPIC-Norfolk cohort. Baseline assessments were carried out during 1993-97 and participants were followed up until March 2016. Participants were divided into four groups according to their total ACB score at baseline; these groups were those with a total ACB score of 0, 1, 2-3 and >3. After exclusion, Cox proportional hazards models were constructed to determine the associations between the ACB score groups and the risk of incident stroke and stroke mortality. Sensitivity analysis and propensity score matched analyses were performed. RESULTS: In total 25 639 participants attended the first health check; 3917 participants were excluded, leaving 21 722 participants to be included. Participants had a mean age [standard deviation (SD)] of 58.9 (9.2) years (54.4% women). Of these, 2131 suffered incident stroke and 562 died from stroke. Mean follow-up was approximately 18 years for both outcomes. In the fully adjusted model, those with an ACB of >3 had 59% relative risk of incident stroke {hazard ratio [HR] [95% confidence interval (CI) 1.59 [1.34-1.89]} and 86% relative risk of stroke mortality [1.86 (1.37-2.53)] compared with those in ACB 0 category. Sensitivity analyses and propensity score matched analyses showed similar results. CONCLUSIONS: Our results provide an incentive for the cautious use of medications with anticholinergic properties, to help reduce the global burden of stroke

    Comparative study of selected indoor concentration from selective laser sintering process using virgin and recycled polyamide nylon (pa12)

    Get PDF
    Additive manufacturing (AM) stands out as one of the promising technologies that have huge potential towards manufacturing industry. The study on additive manufacturing impact on the environment and occupational exposure are attracting growing attention recently. However, most of the researcher focus on desktop and fused deposition modelling type and less attention given to the industrial type of AM. Usually, during the selective laser sintering process, recycle powder will be used again to reduce cost and waste. This article compares the PM 2.5, carbon dioxide (CO2) and total volatile organic compound (TVOC) concentration between virgin and recycles powder using polyamide-nylon (PA12) towards indoor concentration. Four phases of sampling involve during air sampling accordingly to the Industry Code of Practice on Indoor Air Quality 2010 by DOSH Malaysia. It was found that PM 2.5 and CO2 concentration are mainly generated during the pre-printing process. The recycle powder tended to appear higher compared to virgin powder in terms of PM 2.5, and CO2. The peak value of PM 2.5 is 1452 μg/m3 and CO2 is 1218 ppm are obtained during the pre-printing process during 8 hours of sampling. TVOC concentration from recycling powder is slightly higher during the post- printing phase where confirm the influence of the powder cake and PA12 temperature from the printing process. In summary, this work proves that elective laser sintering (SLS) machine operators are exposed to a significant amount of exposure during the SLS printing process. Mitigation strategies and personal protective equipment are suggested to reduce occupational exposure

    Structural reliability analysis of multiple limit state functions using multi-input multi-output support vector machine

    Get PDF
    Selecting and using an appropriate structural reliability method is critical for the success of structural reliability analysis and reliability-based design optimization. However, most of existing structural reliability methods are developed and designed for a single limit state function and few methods can be used to simultaneously handle multiple limit state functions in a structural system when the failure probability of each limit state function is of interest, for example, in a reliability-based design optimization loop. This article presents a new method for structural reliability analysis with multiple limit state functions using support vector machine technique. A sole support vector machine surrogate model for all limit state functions is constructed by a multi-input multi-output support vector machine algorithm. Furthermore, this multi-input multi-output support vector machine surrogate model for all limit state functions is only trained from one data set with one calculation process, instead of constructing a series of standard support vector machine models which has one output only. Combining the multi-input multi-output support vector machine surrogate model with direct Monte Carlo simulation, the failure probability of the structural system as well as the failure probability of each limit state function corresponding to a failure mode in the structural system can be estimated. Two examples are used to demonstrate the accuracy and efficiency of the presented method

    Emerging nuclear collectivity in 124130^{124-130}Te

    Full text link
    The emergence of nuclear collectivity near doubly-magic 132^{132}Sn was explored along the stable, even-even 124130^{124-130}Te isotopes. Preliminary measurements of the B(E2;41+21+)B(E2;4^{+}_{1}\rightarrow2^{+}_{1}) transition strengths are reported from Coulomb excitation experiments primarily aimed at measuring the gg factors of the 41+4^{+}_{1} states. Isotopically enriched Te targets were excited by 198-205 MeV 58^{58}Ni beams. A comparison of transition strengths obtained is made to large-scale shell-model calculations with successes and limitations discussed.Comment: 5 pages, 3 figures, Submitted to Proceedings HIAS 2019, EPJ Web of Conference

    The long noncoding RNA MALAT1 promotes tumor-driven angiogenesis by up-regulating pro-angiogenic gene expression

    Full text link
    Neuroblastoma is the most common solid tumor during early childhood. One of the key features of neuroblastoma is extensive tumor-driven angiogenesis due to hypoxia. However, the mechanism through which neuroblastoma cells drive angiogenesis is poorly understood. Here we show that the long noncoding RNA MALAT1 was upregulated in human neuroblastoma cell lines under hypoxic conditions. Conditioned media from neuroblastoma cells transfected with small interfering RNAs (siRNA) targeting MALAT1, compared with conditioned media from neuroblastoma cells transfected with control siRNAs, induced significantly less endothelial cell migration, invasion and vasculature formation. Microarray-based differential gene expression analysis showed that one of the genes most significantly downregulated following MALAT1 suppression in human neuroblastoma cells under hypoxic conditions was fibroblast growth factor 2 (FGF2). RT-PCR and immunoblot analyses confirmed that MALAT1 suppression reduced FGF2 expression, and Enzyme-Linked Immunosorbent Assays revealed that transfection with MALAT1 siRNAs reduced FGF2 protein secretion from neuroblastoma cells. Importantly, addition of recombinant FGF2 protein to the cell culture media reversed the effects of MALAT1 siRNA on vasculature formation. Taken together, our data suggest that up-regulation of MALAT1 expression in human neuroblastoma cells under hypoxic conditions increases FGF2 expression and promotes vasculature formation, and therefore plays an important role in tumor-driven angiogenesis
    corecore