2,029 research outputs found

    Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb

    Get PDF
    Short-wave infrared barriode detectors were grown by molecular beam epitaxy. An absorption layer composition of In0.28Ga0.72As0.25Sb0.75 allowed for lattice matching to GaSb and cut-off wavelengths of 2.9 μm at 250 K and 3.0 μm at room temperature. Arrhenius plots of the dark current density showed diffusion limited dark currents approaching those expected for optimized HgCdTe-based detectors. Specific detectivity figures of around 7×1010 Jones and 1×1010 Jones were calculated, for 240 K and room temperature, respectively. Significantly, these devices could support focal plane arrays working at higher operating temperatures

    Sequence randomness and polymer collapse transitions

    Full text link
    Contrary to expectations based on Harris' criterion, chain disorder with frustration can modify the universality class of scaling at the theta transition of heteropolymers. This is shown for a model with random two-body potentials in 2D on the basis of exact enumeration and accurate Monte Carlo results. When frustration grows beyond a certain finite threshold, the temperature below which disorder becomes relevant coincides with the theta one and scaling exponents definitely start deviating from those valid for homopolymers.Comment: 4 pages, 4 eps figure

    Scaling and universality in the anisotropic Kondo model and the dissipative two-state system

    Full text link
    Scaling and universality in the Ohmic two-state system is investigated by exploiting the equivalence of this model to the anisotropic Kondo model. For the Ohmic two-state system, we find universal scaling functions for the specific heat, Cα(T)C_{\alpha}(T), static susceptibility, χα(T)\chi_{\alpha}(T), and spin relaxation function Sα(ω)S_{\alpha}(\omega) depending on the reduced temperature T/ΔrT/\Delta_{r} (frequency ω/Δr\omega/\Delta_{r}), with Δr\Delta_{r} the renormalized tunneling frequency, and uniquely specified by the dissipation strength α\alpha (0<α<10<\alpha<1). The scaling functions can be used to extract α\alpha and Δr\Delta_{r} in experimental realizations.Comment: 5 pages (LaTeX), 4 EPS figures. Minor changes, typos corrected, journal reference adde

    Range expansion with mutation and selection: dynamical phase transition in a two-species Eden model

    Get PDF
    The colonization of unoccupied territory by invading species, known as range expansion, is a spatially heterogeneous non-equilibrium growth process. We introduce a two-species Eden growth model to analyze the interplay between uni-directional (irreversible) mutations and selection at the expanding front. While the evolutionary dynamics leads to coalescence of both wild-type and mutant clusters, the non-homogeneous advance of the colony results in a rough front. We show that roughening and domain dynamics are strongly coupled, resulting in qualitatively altered bulk and front properties. For beneficial mutations the front is quickly taken over by mutants and growth proceeds Eden-like. In contrast, if mutants grow slower than wild-types, there is an antagonism between selection pressure against mutants and growth by the merging of mutant domains with an ensuing absorbing state phase transition to an all-mutant front. We find that surface roughening has a marked effect on the critical properties of the absorbing state phase transition. While reference models, which keep the expanding front flat, exhibit directed percolation critical behavior, the exponents of the two-species Eden model strongly deviate from it. In turn, the mutation-selection process induces an increased surface roughness with exponents distinct from that of the classical Eden model

    Dynamical simulation of current fluctuations in a dissipative two-state system

    Full text link
    Current fluctuations in a dissipative two-state system have been studied using a novel quantum dynamics simulation method. After a transformation of the path integrals, the tunneling dynamics is computed by deterministic integration over the real-time paths under the influence of colored noise. The nature of the transition from coherent to incoherent dynamics at low temperatures is re-examined.Comment: 4 pages, 4 figures; to appear in Phys. Rev. Letter

    Dynamics of Tunneling Centers in Metallic Systems

    Full text link
    Dynamics of tunneling centers (TC) in metallic systems is studied, using the technique of bosonization. The interaction of the TC with the conduction electrons of the metal involves two processes, namely, the screening of the TC by electrons, and the so-called electron assisted tunneling. The presence of the latter process leads to a different form of the renormalized tunneling frequency of the TC, and the tunneling motion is damped with a temperature dependent relaxation rate. As the temperature is lowered, the relaxation rate per temperature shows a steep rise as opposed to that in the absence of electron assisted process. It is expected that this behavior should be observed at very low temperatures in a careful experiment. The present work thus tries to go beyond the existing work on the {\it dynamics} of a two-level system in metals, by treating the electron assisted process.Comment: REVTeX twocolumn format, 5 pages, two PostScript figures available on request. Preprint # : imsc 94/3

    Frequency Characteristics of Visually Induced Motion Sickness

    Get PDF
    This article was published in the journal, Human Factors [Sage Publications / © Human Factors and Ergonomics Society.]. The definitive version is available at: http://dx.doi.org/10.1177/0018720812469046Objective: The aim of this study was to explore the frequency response of visually induced motion sickness (VIMS) for oscillating linear motion in the foreand- aft axis. Background: Simulators, virtual environments, and commercially available video games that create an illusion of self-motion are often reported to induce the symptoms seen in response to true motion. Often this human response can be the limiting factor in the acceptability and usability of such systems. Whereas motion sickness in physically moving environments is known to peak at an oscillation frequency around 0.2 Hz, it has recently been suggested that VIMS peaks at around 0.06 Hz following the proposal that the summed response of the visual and vestibular selfmotion systems is maximized at this frequency. Methods: We exposed 24 participants to random dot optical flow patterns simulating oscillating foreand- aft motion within the frequency range of 0.025 to 1.6 Hz. Before and after each 20-min exposure, VIMS was assessed with the Simulator Sickness Questionnaire. Also, a standard motion sickness scale was used to rate symptoms at 1-min intervals during each trial. Results: VIMS peaked between 0.2 and 0.4 Hz with a reducing effect at lower and higher frequencies. Conclusion: The numerical prediction of the “crossover frequency” hypothesis, and the design guidance curve previously proposed, cannot be accepted when the symptoms are purely visually induced. Application: In conditions in which stationary observers are exposed to optical flow that simulates oscillating fore-and-aft motion, frequencies around 0.2 to 0.4 Hz should be avoided

    Optically induced coherent intra-band dynamics in disordered semiconductors

    Full text link
    On the basis of a tight-binding model for a strongly disordered semiconductor with correlated conduction- and valence band disorder a new coherent dynamical intra-band effect is analyzed. For systems that are excited by two, specially designed ultrashort light-pulse sequences delayed by tau relatively to each other echo-like phenomena are predicted to occur. In addition to the inter-band photon echo which shows up at exactly t=2*tau relative to the first pulse, the system responds with two spontaneous intra-band current pulses preceding and following the appearance of the photon echo. The temporal splitting depends on the electron-hole mass ratio. Calculating the population relaxation rate due to Coulomb scattering, it is concluded that the predicted new dynamical effect should be experimentally observable in an interacting and strongly disordered system, such as the Quantum-Coulomb-Glass.Comment: to be published in Physical Review B15 February 200

    Flicker Noise Induced by Dynamic Impurities in a Quantum Point Contact

    Full text link
    We calculate low-frequency noise (LFN) in a quantum point contact (QPC) which is electrostatically defined in a 2D electron gas of a GaAs-AlGaAs heterostructure. The conventional source of LFN in such systems are scattering potentials fluctuating in time acting upon injected electrons. One can discriminate between potentials of different origin -- noise may be caused by the externally applied gate- and source-drain voltages, the motion of defects with internal degrees of freedom close to the channel, electrons hopping between localized states in the doped region, etc. In the present study we propose a model of LFN based upon the assumption that there are many dynamic defects in the surrounding of a QPC. A general expression for the time-dependent current-current correlation function is derived and applied to a QPC with quantized conductance. It is shown that the level of LFN is significantly different at and between the steps in a plot of the conductance vs. gate voltage. On the plateaus, the level of noise is found to be low and strongly model-dependent. At the steps, LFN is much larger and only weakly model-dependent. As long as the system is biased to be at a fixed position relative the conductance step,Comment: 26 revtex APR 94-4
    corecore