130 research outputs found

    Key Dimension 4: Environmental Waste Security

    Get PDF
    Asia and the Pacific shows a positive trend in strengthening water security with the number of water insecure countries dropping to 29 from 38 in 2013, according to this latest edition of the Asian Water Development Outlook (AWDO). Despite this progress, enormous challenges in water security remain. Asia is home to half of the world’s poorest people. Water for agriculture continues to consume 80% of water resources. A staggering 1.7 billion people lack access to basic sanitation. With a predicted population of 5.2 billion by 2050 and 22 megacities by 2030, the region’s finite water resources will be under enormous pressure—especially with increasing climate variability. Recent estimates indicate up to 3.4 billion people could be living in water-stressed areas of Asia by 2050. With a Sustainable Development Goal dedicated to water and sanitation for all, AWDO 2016 is a tool to help assess the region’s progress in meeting this ambitious target

    A green-gray path to global water security and sustainable infrastructure

    Get PDF
    Sustainable development demands reliable water resources, yet traditional water management has broadly failed to avoid environmental degradation and contain infrastructure costs. We explore the global-scale feasibility of combining natural capital with engineering-based (green-gray) approaches to meet water security threats over the 21st century. Threats to water resource systems are projected to rise throughout this period, together with a significant expansion in engineering deployments and progressive loss of natural capital. In many parts of the world, strong path dependencies are projected to arise from the legacy of prior environmental degradation that constrains future water management to a heavy reliance on engineering-based approaches. Elsewhere, retaining existing stocks of natural capital creates opportunities to employ blended green-gray water infrastructure. By 2050, annual engineering expenditures are projected to triple to 2.3trillion,investedmainlyindevelopingeconomies.Incontrast,preservingnaturalcapitalforthreatsuppressionrepresentsapotential2.3 trillion, invested mainly in developing economies. In contrast, preserving natural capital for threat suppression represents a potential 3.0 trillion in avoided replacement costs by mid-century. Society pays a premium whenever these nature-based assets are lost, as the engineering costs necessary to achieve an equivalent level of threat management are, on average, twice as expensive. Countries projected to rapidly expand their engineering investments while losing natural capital will be most constrained in realizing green-gray water management. The situation is expected to be most restrictive across the developing world, where the economic, technical, and governance capacities to overcome such challenges remain limited. Our results demonstrate that policies that support blended green-gray approaches offer a pathway to future global water security but will require a strategic commitment to preserving natural capital. Absent such stewardship, the costs of water resource infrastructure and services will likely rise substantially and frustrate efforts to attain universal and sustainable water security

    Earth system justice needed to identify and live within Earth system boundaries

    Get PDF
    Living within planetary limits requires attention to justice as biophysical boundaries are not inherently just. Through collaboration between natural and social scientists, the Earth Commission defines and operationalizes Earth system justice to ensure that boundaries reduce harm, increase well-being, and reflect substantive and procedural justice. Such stringent boundaries may also affect ‘just access’ to food, water, energy and infrastructure. We show how boundaries may need to be adjusted to reduce harm and increase access, and challenge inequality to ensure a safe and just future for people, other species and the planet. Earth system justice may enable living justly within boundaries

    Integrated modelling of cost-effective siting and operation of flow-control infrastructure for river ecosystem conservation

    Full text link
    Wetland and floodplain ecosystems along many regulated rivers are highly stressed, primarily due to a lack of environmental flows of appropriate magnitude, frequency, duration, and timing to support ecological functions. In the absence of increased environmental flows, the ecological health of river ecosystems can be enhanced by the operation of existing and new flow-control infrastructure (weirs and regulators) to return more natural environmental flow regimes to specific areas. However, determining the optimal investment and operation strategies over time is a complex task due to several factors including the multiple environmental values attached to wetlands, spatial and temporal heterogeneity and dependencies, nonlinearity, and time-dependent decisions. This makes for a very large number of decision variables over a long planning horizon. The focus of this paper is the development of a nonlinear integer programming model that accommodates these complexities. The mathematical objective aims to return the natural flow regime of key components of river ecosystems in terms of flood timing, flood duration, and interflood period. We applied a 2-stage recursive heuristic using tabu search to solve the model and tested it on the entire South Australian River Murray floodplain. We conclude that modern meta-heuristics can be used to solve the very complex nonlinear problems with spatial and temporal dependencies typical of environmental flow allocation in regulated river ecosystems. The model has been used to inform the investment in, and operation of, flow-control infrastructure in the South Australian River Murray.<br /

    CAR-T cell. the long and winding road to solid tumors

    Get PDF
    Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the "next generation" of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host's defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles

    Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery

    Get PDF
    The Rowett Institute and SRUC are core funded by the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government. The Roslin Institute forms part of the Royal (Dick) School of Veterinary Studies, University of Edinburgh. This project was supported by the Biotechnology and Biological Sciences Research Council (BBSRC; BB/N016742/1, BB/N01720X/1), including institute strategic programme and national capability awards to The Roslin Institute (BBSRC: BB/P013759/1, BB/P013732/1, BB/J004235/1, BB/J004243/1); and by the Scottish Government as part of the 2016–2021 commission.Peer reviewedPublisher PD

    Manufacturing flow line systems: a review of models and analytical results

    Get PDF
    The most important models and results of the manufacturing flow line literature are described. These include the major classes of models (asynchronous, synchronous, and continuous); the major features (blocking, processing times, failures and repairs); the major properties (conservation of flow, flow rate-idle time, reversibility, and others); and the relationships among different models. Exact and approximate methods for obtaining quantitative measures of performance are also reviewed. The exact methods are appropriate for small systems. The approximate methods, which are the only means available for large systems, are generally based on decomposition, and make use of the exact methods for small systems. Extensions are briefly discussed. Directions for future research are suggested.National Science Foundation (U.S.) (Grant DDM-8914277

    Socioeconomic inequality in domains of health: results from the World Health Surveys

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In all countries people of lower socioeconomic status evaluate their health more poorly. Yet in reporting overall health, individuals consider multiple domains that comprise their perceived health state. Considered alone, overall measures of self-reported health mask differences in the domains of health. The aim of this study is to compare and assess socioeconomic inequalities in each of the individual health domains and in a separate measure of overall health.</p> <p>Methods</p> <p>Data on 247,037 adults aged 18 or older were analyzed from 57 countries, drawn from all national income groups, participating in the World Health Survey 2002-2004. The analysis was repeated for lower- and higher-income countries. Prevalence estimates of poor self-rated health (SRH) were calculated for each domain and for overall health according to wealth quintiles and education levels. Relative socioeconomic inequalities in SRH were measured for each of the eight health domains and for overall health, according to wealth quintiles and education levels, using the relative index of inequality (RII). A RII value greater than one indicated greater prevalence of self-reported poor health among populations of lower socioeconomic status, called pro-rich inequality.</p> <p>Results</p> <p>There was a descending gradient in the prevalence of poor health, moving from the poorest wealth quintile to the richest, and moving from the lowest to the highest educated groups. Inequalities which favor groups who are advantaged either with respect to wealth or education, were consistently statistically significant in each of the individual domains of health, and in health overall. However the size of these inequalities differed between health domains. The prevalence of reporting poor health was higher in the lower-income country group. Relative socioeconomic inequalities in the health domains and overall health were higher in the higher-income country group than the lower-income country group.</p> <p>Conclusions</p> <p>Using a common measurement approach, inequalities in health, favoring the rich and the educated, were evident in overall health as well as in every health domain. Existent differences in averages and inequalities in health domains suggest that monitoring should not be limited only to overall health. This study carries important messages for policy-making in regard to tackling inequalities in specific domains of health. Targeting interventions towards individual domains of health such as mobility, self-care and vision, ought to be considered besides improving overall health.</p

    Impacts of meeting minimum access on critical earth systems amidst the Great Inequality

    Get PDF
    The Sustainable Development Goals aim to improve access to resources and services, reduce environmental degradation, eradicate poverty and reduce inequality. However, the magnitude of the environmental burden that would arise from meeting the needs of the poorest is under debate—especially when compared to much larger burdens from the rich. We show that the ‘Great Acceleration’ of human impacts was characterized by a ‘Great Inequality’ in using and damaging the environment. We then operationalize ‘just access’ to minimum energy, water, food and infrastructure. We show that achieving just access in 2018, with existing inequalities, technologies and behaviours, would have produced 2–26% additional impacts on the Earth’s natural systems of climate, water, land and nutrients—thus further crossing planetary boundaries. These hypothetical impacts, caused by about a third of humanity, equalled those caused by the wealthiest 1–4%. Technological and behavioural changes thus far, while important, did not deliver just access within a stable Earth system. Achieving these goals therefore calls for a radical redistribution of resources
    • 

    corecore