17 research outputs found

    NM-300 Silver Characterisation, Stability, Homogeneity

    Get PDF
    This report describes the characteriation of NM-300, a nano-silver reference material used in the context of risk and exposure assessment studies. The material was produced in the context of the JRC IHCP activity on nano-materials. A representative set test items was handed over to the JRC IES analytical laboratory for further characterisation. First, inorganic chemical characterisation of the total silver content and the homogeneity of the Ag-distribution was done using ICP-AES. To this end, a dedicated method was developed and validated according to the requirements laid down in ISO 17025. This works were completed by different types of microscopy analyses (Scanning Electron Microscope, Transmission Electron Microscope and Nanoparticle Tracking Analysis) performed in close collaboration with the German Institute of Energy and Environmental Technology e.V. (IUTA), the Swiss Federal Laboratories for Materials Science and Technology (EMPA) and Belgium Veterinary and Agrochemical Research Centre (VAR). This report summarises all technical details and discusses the assessments made.JRC.DG.I.5-Nanobioscience

    A nanomaterial release model for waste shredding using a Bayesian belief network.

    No full text
    The shredding of waste of electrical and electronic equipment (WEEE) and other products, incorporated with nanomaterials, can lead to a substantial release of nanomaterials. Considering the uncertainty, complexity, and scarcity of experimental data on release, we present the development of a Bayesian belief network (BBN) model. This baseline model aims to give a first prediction of the release of nanomaterials (excluding nanofibers) during their mechanical shredding. With a focus on the description of the model development methodology, we characterize nanomaterial release in terms of number, size, mass, and composition of released particles. Through a sensitivity analysis of the model, we find the material-specific parameters like affinity of nanomaterials to the matrix of the composite and their state of dispersion inside the matrix to reduce the nanomaterial release up to 50%. The shredder-specific parameters like number of shafts in a shredder and input and output size of the material for shredding could minimize it up to 98%. The comparison with two experimental test cases shows promising outcome on the prediction capacity of the model. As additional experimental data on nanomaterial release becomes available, the model is able to further adapt and update risk forecasts. When adapting the model with additional expert beliefs, experts should be selected using criteria, e.g., substantial contribution to nanomaterial and/or particulate matter release-related scientific literature, the capacity and willingness to contribute to further development of the BBN model, and openness to accepting deviating opinions

    Comparison of instruments for particle number size distribution measurements in air quality monitoring

    Get PDF
    Number size distributions of airborne particles are relevant to fields including ambient monitoring, pharmaceutical and automotive measurements. A number of commercially available instruments can be used to determine particle number size distributions including the Electrical Low Pressure Impactor (ELPI), Scanning Mobility Particle Sizer (SMPS), Fast Mobility Particle Sizer (FMPS) and the Aerodynamic Particle Sizer (APS). The comparability of the data provided by these instruments has not been fully tested for different kinds of aerosols. This study compared number size distributions of laboratory generated aerosols (TiO2, NaCl, fumed silica and soot) in a wind tunnel. Reasonable agreement was noted between the different instruments, though there were divergences. For example the ELPI was inconsistent at the upper and lower limits of its working size (at low concentrations). Instruments responded variably to different particle types, which has important implications for sampling heterogeneous particle mixtures such as those found in urban air. This study highlights the need for caution when comparing data obtained from different particle instruments, and demonstrates the requirement for further comparison studies in controlled settings using an assortment of particle types with the aim to standardise and harmonise particle sampling protocols.<br/

    Risk Management Framework for Nano-Biomaterials Used in Medical Devices and Advanced Therapy Medicinal Products

    Get PDF
    The convergence of nanotechnology and biotechnology has led to substantial advancements in nano-biomaterials (NBMs) used in medical devices (MD) and advanced therapy medicinal products (ATMP). However, there are concerns that applications of NBMs for medical diagnostics, therapeutics and regenerative medicine could also pose health and/or environmental risks since the current understanding of their safety is incomplete. A scientific strategy is therefore needed to assess all risks emerging along the life cycles of these products. To address this need, an overarching risk management framework (RMF) for NBMs used in MD and ATMP is presented in this paper, as a result of a collaborative effort of a team of experts within the EU Project BIORIMA and with relevant inputs from external stakeholders. The framework, in line with current regulatory requirements, is designed according to state-of-the-art approaches to risk assessment and management of both nanomaterials and biomaterials. The collection/generation of data for NBMs safety assessment is based on innovative integrated approaches to testing and assessment (IATA). The framework can support stakeholders (e.g., manufacturers, regulators, consultants) in systematically assessing not only patient safety but also occupational (including healthcare workers) and environmental risks along the life cycle of MD and ATMP. The outputs of the framework enable the user to identify suitable safe(r)-by-design alternatives and/or risk management measures and to compare the risks of NBMs to their (clinical) benefits, based on efficacy, quality and cost criteria, in order to inform robust risk management decision-making.</p
    corecore