2,362 research outputs found

    Modeling of SBS Phase Conjugation in Multimode Step Index Fibers

    Get PDF
    Stimulated Brillouin scattering in a multimode step-index fiber can be used to generate a counter-propagating, phase-conjugate beam that would prove useful in many applications, such as near diffraction limited, double-pass high-power amplifiers or coherent beam combination. Relatively little modeling of such a fiber-based phase conjugator has been done, making design decisions regarding type and length of fiber largely guesswork. A numerical model was constructed with the aim of providing educated predictions about the phase conjugate fidelity that could be expected from a given pump intensity input coupled into a specific fiber. A numerical perturbation algorithm was constructed to search for the Stokes modal arrangement with the highest gain for a given pump input. The gain was calculated from the differential equation for the Stokes power under the assumption that all pump/Stokes modes decay/grow at the same rate, and that the fiber was lossless. The model proves to be much more accurate in predicting experimentally observed phase conjugate fidelities than previous efforts. In addition, the phenomenon of beam cleanup to higher order fiber modes is predicted and explained

    Engaging with the Dory Fleet: A Panel Discussion on a Collaborative College and Community Oral History Project

    Get PDF
    This peer-reviewed program was presented at the annual Northwest Communication Association Conference in Coeur d’Alene Idaho on April 15, 2016. The presentation features an overview of the Launching through the Surf: The Dory Fleet of Pacific City project and includes detailed notes from each speaker. Special thanks go to Mary Beth Jones and Brenda DeVore Marshall, who served as transcriber and editor for the detailed speaker notes

    Guest Artist Recital: Arizona State University Percussion-Clarinet Duo

    Get PDF

    Embodying Social Capital Facilitatorsin a Collaborative Authoring System

    Get PDF
    This paper addresses selected analysis and design considerations for collaborative software. The paper explains how social border activity differs from the focal activity of a system and discusses why considering the border may be important in collaborative system design. The paper presents some definitions and a social border framework which might serve to guide a collaborative systems analysis and design. An example of how this framework impacts one existing collaborative authoring system based on a preliminary application of the requirements analysis framework is provided. Methods and metrics that may be used to assess the impact of design for the social periphery are also provided

    The Arizona State University Percussion/Clarinet Duo Robert Spring, Clarinet J.B. Smith, Percussion

    Get PDF
    Kemp Recital Hall Sunday Evening January 29, 1995 8:00p

    The Large Scale Curvature of Networks

    Full text link
    Understanding key structural properties of large scale networks are crucial for analyzing and optimizing their performance, and improving their reliability and security. Here we show that these networks possess a previously unnoticed feature, global curvature, which we argue has a major impact on core congestion: the load at the core of a network with N nodes scales as N^2 as compared to N^1.5 for a flat network. We substantiate this claim through analysis of a collection of real data networks across the globe as measured and documented by previous researchers.Comment: 4 pages, 5 figure

    Movement-Related Cortical Potential Amplitude Reduction after Cycling Exercise Relates to the Extent of Neuromuscular Fatigue.

    Get PDF
    Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (-10 ± 8%) and the time trial (-21 ± 9%). The voluntary activation level (VAL; -6 ± 8 and -12 ± 10%), peak twitch (Pt; -21 ± 16 and -32 ± 17%), and paired stimuli (P100 Hz; -7 ± 11 and -12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction
    corecore