36,550 research outputs found
Discharges on a negatively biased solar array in a charged particle environment
The charging behavior of a negatively biased solar cell array when subjected to a charged particle environment is studied in the ion density range from 200 to 12 000 ions/sq cm with the applied bias range of -500 to -1400 V. The profile of the surface potentials across the array is related to the presence of discharges. At the low end of the ion density range the solar cell cover slides charge to from 0 to +5 volts independent of the applied voltage. No discharges are seen at bias voltages as large as -1400 V. At the higher ion densities the cover slide potential begins to fluctuate, and becomes significantly negative. Under these conditions discharges can occur. The threshold bias voltage for discharges decreases with increasing ion density. A condition for discharges emerging from the experimental observations is that the average coverslide potential must be more negative than -4 V. The observations presented suggest that the plasma potential near the array becomes negative before a discharge occurs. This suggests that discharges are driven by an instability in the plasma
Modal strain energies in COSMIC NASTRAN
A computer program was developed to take a NASTRAN output file from a normal modes analysis and calculate the modal strain energies of selected elements. The FORTRAN program can determine the modal strain energies for CROD, CBAR, CELAS, CTRMEM, CQDMEM2, and CSHEAR elements. Modal strain energies are useful in estimating damping in structures
Thrust measurements of a hollow-cathode discharge
Thrust measurements of a hollow cathode mercury discharge were made with a synthetic mica target on a torsion pendulum. Thrust measurements were made for various target angles, tip temperatures, flow rates, keeper discharge powers, and accelerator electrode voltages. The experimental thrust data are compared with theoretical values for the case where no discharge power was employed
Discharges on a negatively biased solar cell array in a charged-particle environment
The charging behavior of a negatively biased solar cell array when subjected to a charged particle environment is studied in the ion density range from 200 to 12,000 ions/sq cm with the applied bias range of -500 to -1400 V. The profile of the surface potentials across the array is related to the presence of discharges. At the low end of the ion density range the solar cell cover slides charge to from 0 to +5 volts independent of the applied voltage. No discharges are seen at bias voltages as large as -1400 V. At the higher ion densities the cover slide potential begins to fluctuate, and becomes significantly negative. Under these conditions discharges can occur. The threshold bias voltage for discharges decreases with increasing ion density. A condition for discharges emerging from the experimental observations is that the average coverslide potential must be more negative than -4 V. The observations presented suggest that the plasma potential near the array becomes negative before a discharge occurs. This suggests that discharges are driven by an instability in the plasma
Incorporating a Tracking Signal into State Space Models for Exponential Smoothing
It is a common practice to complement a forecasting method such as simple exponential smoothing with a monitoring scheme to detect those situations where forecasts have failed to adapt to structural change. It will be suggested in this paper that the equations for simple exponential smoothing can be augmented by a common monitoring statistic to provide a method that automatically adapts to structural change without human intervention. It is shown that the resulting equations conform to those of damped trend corrected exponential smoothing. In a similar manner, exponential smoothing with drift, when augmented by the same monitoring statistic, produces equations that split the trend into long term and short term components.Forecasting, exponential smoothing, tracking signals.
Fabrication of lightweight parabolic concentrators from a glass master Final report
Forming of optical lightweight solar concentrator on glass master - spray technique for resin substrate layer
A View of Damped Trend as Incorporating a Tracking Signal into a State Space Model
Damped trend exponential smoothing has previously been established as an important forecasting method. Here, it is shown to have close links to simple exponential smoothing with a smoothed error tracking signal. A special case of damped trend exponential smoothing emerges from our analysis, one that is more parsimonious because it effectively relies on one less parameter. This special case is compared with its traditional counterpart in an application to the annual data from the M3 competition and is shown to be quite competitive.Exponential smoothing, monitoring forecasts, structural change, adjusting forecasts, state space models, damped trend
Ion collection from a plasma by a pinhole
Ion focusing by a biased pinhole is studied numerically. Laplace's equation is solved in 3-D for cylindrical symmetry on a constant grid to determine the potential field produced by a biased pinhole in a dielectric material. Focusing factors are studied for ions of uniform incident velocity with a 3-D Maxwellian distribution superimposed. Ion currents to the pinhole are found by particle tracking. The focusing factor of positive ions as a function of initial velocity, temperature, injection radius, and hole size is reported. For a typical Space Station Freedom environment (oxygen ions having a 4.5 eV ram energy, 0.1 eV temperature, and a -140 V biased pinhole), a focusing factor of 13.35 is found for a 1.5 mm radius pinhole
Plasma sheath effects on ion collection by a pinhole
This work presents tables to assist in the evaluation of pinhole collection effects on spacecraft. These tables summarize results of a computer model which tracks particle trajectories through a simplified electric field in the plasma sheath. A technique is proposed to account for plasma sheath effects in the application of these results and scaling rules are proposed to apply the calculations to specific situations. This model is compared to ion current measurements obtained by another worker, and the agreement is very good
Coal feed component testing for CDIF
Investigations conducted during the conceptual design of the Montana MHD Component Development and Integration Facility (CDIF) identified commercially available processing and feeding equipment potentially suitable for use in a reference design. Tests on sub-scale units of this equipment indicated that they would perform as intended
- …
