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Abstract 

 

It is a common practice to complement a forecasting method such as simple 

exponential smoothing with a monitoring scheme to detect those situations where 

forecasts have failed to adapt to structural change. It will be suggested in this paper 

that the equations for simple exponential smoothing can be augmented by a common 

monitoring statistic to provide a method that automatically adapts to structural change 

without human intervention. It is shown that the resulting equations conform to those 

of damped trend corrected exponential smoothing.  In a similar manner, exponential 

smoothing with drift, when augmented by the same monitoring statistic, produces 

equations that split the trend into long term and short term components. 
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Introduction 

 

A tracking signal is used for monitoring forecast errors to detect structural changes in 

time series.  The goal of this oversight is to maintain control of a forecasting system 

by responding to out-of- control signals that are based on the forecast errors.  One of 

the widely used tracking signals was introduced by Trigg (1964) and is based on a 

smoothed forecasting error.  We will show that the effect of incorporating this 

smoothed forecasting error directly into the level equation of simple exponential 

smoothing is equivalent to using the damped trend exponential smoothing method of 

Gardner and McKenzie (1985).  Thus we provide evidence that damped trend 

exponential smoothing itself adapts to structural change without intervention.  This 

procedure of augmenting a state equation is then extended to the case of exponential 

smoothing with a drift.  In this latter situation, the resulting method includes equations 

that split the trend into long-term and short-term trend components. 

 

The paper is organized in the following manner.  In the second section we introduce 

the smoothed-error statistic and the innovations state space models for simple 

exponential smoothing with and without a drift.  The equivalence between damped 

trend exponential smoothing and simple exponential smoothing that is augmented 

with a tracking signal is shown in the third section.  The equivalence of a new 

exponential smoothing method and an augmented simple smoothing with a drift is 

explained in the fourth section.  In the last section, we summarize the contributions of 

these theoretical derivations. 

 

State space models and smoothed-error statistic 

 

We begin by introducing state space models for time series that underlie the methods 

of simple exponential smoothing and simple exponential smoothing with a drift.  We 

also define the smoothed-error statistic that is part of historical tracking signals and 

adaptive smoothing techniques.   

 

The innovations state space model for simple exponential smoothing is 
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  ttty ε+= −1A                   (1a) 

  ttt αε+= −1AA                   (1b) 

 

where represents the time series at time t,  is the level of the time series at time t, ty tA

α  is the smoothing parameter, and { }tε  is a sequence of independent identically and 

normally distributed random variables with mean 0 and standard deviation σ . 

 

The innovations state space model for the exponential smoothing method with an 

upward or downward drift b is 

 

  ttt by ε++= −1A                  (2a) 

  ttt b αε++= −1AA .                 (2b) 

 

In both models tε is the forecast error.  For later use, observe that in these models both 

Equation (1a) and (2a) can be expressed in terms of the current level as follows: 

 

  ttty εα )1( −+= A        (3) 

 

 

The smoothed-error statistic often used in tracking signals is the weighted average 

 

  ttt εφεφε )1(1 −+= −        (4) 

where the parameter φ controls the size of the weights and must lie between 0 and 1. 

Under the null hypotheses that the forecasts are under control, tε  has a normal 

distribution with mean 0 and standard deviation )1)1( 2φφσ −− .  The smoothed-

error statistic tε  can be employed as a tracking signal, and this standard deviation can 

be used to establish an out-of-control region for a specified level of significance.  This 

method of monitoring is a simple alternative to the the more traditional approach 

based on the tracking signal (Trigg, 1964) formed from the ratio of tε   to the 

smoothed mean absolute deviation. Gardner (1983), however, argued that the 

distribution for the Trigg tracking signal cannot be derived analytically, a serious 
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impediment to its use in practice. Either way, the parameter(s) α  (and b) would have 

to be re-estimated and A  re-initialized when an out-of-control signal is produced.  

Yet another possibility (Trigg and Leach, 1967) is an adaptive method of forecasting 

where the Trigg ratio itself is used in place of the smoothing parameter 

t

α  in simple 

exponential smoothing. By doing this, the smoothing parameter adapts over time in 

response to variations in the amount of structural change.  However, Gardner (2006) 

states, “In Gardner (1985), I concluded that there was no credible evidence in favor of 

any of the numerous forms of adaptive smoothing.”  

+1

+1

1 +−

 

A model combining simple exponential smoothing and a tracking signal 

 

In this section, we show that if the level  is made self-adjusting in the innovations 

model for simple exponential smoothing, the result is a model for damped trend 

exponential smoothing.  We start by augmenting Equation (1b) with the smoothed-

error statistic in Equation (4) as follows: 

tA

 

  tttt εδαε += ∗
−

∗ AA          (5) 

 

where A  is the augmented level and*
t δ  is a parameter that controls the amount of 

adjustment. 

 

Then, define ttb εδ=  and substitute it into Equation (5) to obtain 

 

  .       (6) tttt b αε+= ∗
−

∗ AA

 

Multiply Equation (4) by δ and use the definition of  to give tb

 

  b ttt b δεφφ )1( −= .       (7) 

 

If we let δφβ )1( −= , then  
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  b ttt b βεφ += −1 .       (8) 

 

Next use Equation (8) to substitute for b  in Equation (6), and find that t

 

  A .      (9) ttttt b αεβεφ +++= −
∗
−

∗
11A

 

If we let , then βαα +=∗

 

  A .                (10) tttt b εαφ ∗
−

∗
−

∗ ++= 11A

 

 

The analogue to Equation (3) with our new level A  and smoothing parameter  is  ∗
t

∗α

 

                   (11) ttty εα )1( ∗∗ −+= A

 

Using Equation (10), substitute for A  in Equation (11) to obtain ∗
t

 

    ttttt by εαεαφ )1(11
∗∗

−
∗
− −+++= A

 

Thus, 

                    12) tttt by εφ ++= −
∗
− 11A

 

 

Equation (12), (10), and (8) form an innovations state space model for the damped 

trend exponential smoothing method of Gardner and McKenzie (1985).  Thus, it has 

been shown that the self-correcting scheme that combines Equations (4) and (5) is 

equivalent to the damped trend exponential smoothing method of Gardner and 

McKenzie. We have also provided a statistical model for this forecasting method.  

Moreover, we offer this equivalence as one reason why damped trend exponential 

smoothing works so well in practice. 
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It is easy to see that with the damped trend model, the forecast for h periods ahead 

from time period n is 

 

    n
h

nnnn bbbhy φφφ ++++= ∗ "A 2)(ˆ

 

The forecasted growth rate at time period ht +  is . When  0n
hbφ 1<< φ , it converges 

to 0 as the forecast horizon h increases so that the forecasts converge to the fixed 

value A  for the level. When there is a persistent long term growth in the 

data, one may prefer to use a model in which the forecasted  growth rate does not 

disappear, such as model (2), Holt’s linear exponential smoothing, or the model that 

arises in the next section. 

)1/( φφ −+∗
nn b

 

Extension to simple exponential smoothing with a drift 

 

The approach of augmenting the level equation with the smoothed-error statistic can 

be applied to the model for simple exponential smoothing with drift in Equation (2). 

This time the effect is to split the trend into two parts: a long-term trend and a damped 

trend. 

 

As in the earlier case, the smoothed-error statistic tε  is incorporated into the model by 

augmenting the level in Equation (2b) as follows: 

 

   tttt b εδαε +++= ∗
−

∗
1AA .               (13) 

 

This time, in order to simplify the derivation, we use the lag operator L, where 

 for any time series a .  Equation (4) can be written in terms of 1−= tt aLa t tε  as 

 

   
L

t
t φ

εφε
−
−

=
1

)1( .                 (14) 

 

 

When Equation (14) is substituted into Equation (13), we have 
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L

b t
ttt φ

εφδαε
−
−

+++= ∗
−

∗

1
)1(

1AA . 

Define  b  by t

 

   
L

bb t
t φ

εφδ
−
−

+=
1

)1( . 

 

It follows that  

 

   b               (15) ttt bb εφδφφ )1()1(1 −+−+= −

 

and that 

             

1 1 1 (1 ) (1 )t t t t t t tb b b tαε φ φ δ φ ε∗ ∗ ∗
− − −= + + = + + − + − +A A A αε                          (16) 

 

Letting  and αφδα +−=∗ )1( )1( φδβ −= , Equations (15) and (16) become 

 

   A               (17) tttt bb εαφφ ∗
−

∗
−

∗ +−++= )1(11A

   b .                          (18)

  

ttt bb βεφφ +−+= − )1(1

 

The analogue for  in Equation (3) is ty

 

    ttty εα )1( ∗∗ −+= A

                      (19) ttt bb εφφ +−++= −
∗
− )1(11A

 

In this case we have shown that the self-correcting scheme that combines Equations 

(13) and (4) is equivalent to Equations (17), (18), and (19). The latter form a very 

interesting new innovations state space model in which b  and b  may be interpreted 

as the long-term growth and short-term growth respectively.  The forecast for h 

1−t
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periods into the future from time period n with this model (see the Appendix for 

proof) is 

 

                 (20) [ ]∑
=

∗ −++=
h

j

j
n

j
nn bbhy

1
)1()(ˆ φφA

            

Thus, the forecasted growth rate in time period jn +  combines the short-term and 

long-term growth rates as 

 

  b . bbj j
n

j
n )1()(ˆ φφ −+=

 

When 0 1φ≤ < , the forecasted growth b  converges to the long term growth rate 

 as the prediction horizon j increases.  The local level eventually increases at a 

constant rate rather than leveling out to a constant value. 

)(ˆ jn

b

 

Another interesting feature of this model is that by allowing φ  to range from 0 to 1, it 

ranges between a local level model with drift and a local trend model.  In other words, 

the model ranges between using one and two differencing operators.  If 0φ = , the 

reduced form of the model is an ARIMA(0,1,1) with a constant term b, that is,  

( )(1 ) 1tL y b L tθ ε− = + − .  If 1=φ , the reduced form of the model is an 

ARIMA(0,2,2) model, that is, ( )2
1 2) 1tL y L L2

t(1 θ θ− = − − ε .  Thus, by using this 

model when there is an upward trend in the data, one avoids the decision of whether 

the data contains a single or double unit root. 

 

As an illustration of the application of the model, a time series that is composed of the 

gross domestic product GDP values in the U.S. from 1970 to 2004 was examined. We 

used the following restrictions on the parameters: 0 1≤≤ φ , ( , 

 ) .  The latter three conditions are the 

invertibility conditions for the corresponding reduced model.  The long run growth 

rate b was set to the slope of a classical tend line fitted to all 35 observations.  To 

capture the initial local features of the series, the seed states  and b  were set to the 

φβαφ <− ∗)1

∗
0A 0

∗< φαφ )1_( , 1(2)1( φφβαφ +<++ ∗
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intercept and slope respectively of a classical trend line fitted to only the first 5 

observations.  The optimal values for the parameters were found by minimizing the 

sum of the squared forecast errors (SSE) with Solver in Microsoft Excel.  The results 

were 939.=φ , , 004.1=∗α 310.=β , b (long term growth rate) = .071,  and  (the 

short term growth rate) = .055.  In this case, the value of 

35b

φ  is close to 1 showing that 

short term growth rate is the most important component of the trend in the initial 

forecasts.  Repeating this process for Australian GDP over the same time frame, we 

found 916.=φ , , 042.1=∗α 166.=β , b (long term growth rate) = .070,  and b  (the 

short term growth rate) = .060. 

35

 

Conclusions 

 

The most significant contribution of this paper is that it provides an explanation for 

why damped trend exponential smoothing has been so successful in practice.  We 

show that it can be thought of as simple exponential smoothing with an embedded 

tracking signal that allows the forecast to adjust to structural change.  Almost as 

important is a new method for exponential smoothing that resulted from incorporating 

a statistic for tracking forecast errors directly into a model for simple exponential 

smoothing with a drift.  This method, and its corresponding innovations state space 

model, allows one to forecast a time series with two types of trend components: one 

for long-term growth and a second for short-term growth.  In both cases, it is 

enlightening to know that some models essentially contain tracking signals. 
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Appendix 

 

Forecasts for the New Trend Model 

 

 

In this appendix we will derive the h-period-ahead forecast in Equation (20) for the 

new combined trend model defined by Equations (17), (18), and (19).  We will 

use to denote the conditional expected value of a variable at time t, given the 

initial values of the states, the values of the parameters, and the values of for 

.  Thus, the forecast of  at time n, , is .  We now show by 

mathematical induction for h  that 

)(⋅E

,,1…

ty

nt = hny + )(ˆ hyn )( hnyE +

1≥

 

               (21a) [ ]∑
=

∗ −++=
h

j

j
n

j
nn bbhy

1
)1()(ˆ φφA

  [ ]∑
=

∗∗
+ −++=

h

j

j
n

j
nhn bbE

1
)1()( φφAA             (21b)

   

                (21c) bbbE h
n

h
hn )1()( φφ −+=+

 

Using the equations for the new combined trend model when 1=h , 

 

  *
1 1ˆ (1) ( ) ( (1 )n n n ny E y E b b )tφ φ ε+ += = + + − +A  

     += A  bbnn )1( φφ −+∗
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)

)

    )1(()( 1 tnnn bbEE αεφφ +−++= ∗∗
+ AA

     += A  bbnn )1( φφ −+∗

 

   ))1(()( 1 tnn bbEbE βεφφ +−+=+  

     bbn )1( φφ −+=  

 

Now we assume that  (21) is true for h-1 and show it is then true for h. 

 

  )

b

)1(()()(ˆ 11 hnhnhnhnn bbEyEhy +−+
∗

−++ +−++== εφφA

     =
1

1 1

1

(1 ) (1 ) (1 )
h

j j h h
n n n

j
b b b bφ φ φ φ φ φ

−
∗ −

=

   + + − + + − + −   ∑ −

b

A  

     
1

1

1

(1 ) (1 ) (1 )
h

j j h h
n n n

j
b b bφ φ φ φ φ φ

−
∗ −

=

  + − + + − + − = +   ∑A 

h

 

     = +  
1

1

(1 ) (1 )
h

j j h
n n n

j
b b b bφ φ φ φ

−
∗

=

 + − + + − ∑A

     [ ]
=

∗ −+
h

j

j
n

j
n bb

1
)1( φφ∑+= A  

Similarly, 

    ))1(()( 11 hnhnhnhn bbEE +−+
∗

−+
∗
+ +−++= αεφφAA

      [ ]
=

∗ −+
h

j

j
n

j
n bb

1
)1( φφ∑+= A  

 

and 

           1( ) ( (1 )n h n h n hE b E b b )φ φ βε+ + −= + − + +  

    =   bb h
n

h )1( φφ −+
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