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David B. Snyder 
National Aeronautics and Space Administration 

Lewis Research Center 
Cleveland, Ohio 44135 

and 

Joel L. Herr 
Sverdrup Technology, Inc. 

Lewis Research Center Group 
Brook Park, Ohio 44142 

ABSTRACT 

Ion focusing by a biased pinhole is studied numerically. Laplace's equation is solved in three dimensions for cylindrical 
symmetry on a constant grid to determine the potential field produced by a biased pinhole in a dielectric material. 
Focusing factors are studied for ions of uniform' incident velocity with a three dimensional Maxwellian distribution 
superimposed. Ion currents to the pinhole are found by particle tracking. 

The focusing factor of positive ions as a function of initial velocity, temperature, injection radius and hole size is reported. 
For a typical Space Station Freedom environment (i.e. oxygen ions having a 4.5 eV ram energy, 0.1 eV temperature and 
a -140 V biased pinhole), a focusing factor of 13.35 is found for a 1.5 mm radius pinhole. 

INTRODUCTION 

Present designs for Space Station Freedom SSF will 
result in structure potentials negative from the ambient 
plasma by about 150 V. This gives rise to concerns 
about sputtering by collection of ambient ions. On a 
broad scale this effect will be a contamination concern, 
but should not directly damage SSF structure. However 
SSF structure is covered by an insulating oxide layer. If 
holes develop in the insulation, ions will be focused into 
the hole and the local sputtering rate enhanced. At 
these pinhole sites sputtering will be aggravated. It is 

• the enhanced collection of ions at these sites which this 
paper discusses. 

• Consideratile effort has already gone into understanding 
how electtbhs are collected from plasma. Experimental 
measuremertts have been performed (ref. 1, 2), and 
computational models have been developed (ref. 3-5) to 
understand the 'snapover' effect, where electron 
collection to pinholes is significantly enhanced at 
potentials of a few hundred volts positive. However 
since ion collection does not exhibit this effect (due to 
the lower secondary electron yields) the simpler problem 

has not been investigated as intensively. 

Recently, as part of the Space Station Electrical 
Grounding Tiger Team effort, Vaughn (ref. 6) has 
measured focus factors for ion collection, and Katz et al 
(ref. 7) have performed some initial calculations. 

The model presented here does not solve Poisson's 
equation. Instead it solves Laplace's equation with 
computationally convenient boundary conditions. Thus 
it represents a simplification of the actual problem. 
While the results will not be exact, the model permits 
considerable qualitative examination of issues, and 
quantitative estimates of sputtering rates. 

MODEL 

The approach taken in this work is to solve Laplace's 
equation for a pinhole geometry, then track ion 
trajectories through the potential field. Electric fields 
are calculated from this potential field, and the equations 
of motion solved to find the trajectories of particles 
attracted toward the hole. The collection enhancement 
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(focusing factor) can be found by finding the radius 
where particles no longer hit inside the hole. This 
approach does not include space charge effects. An 
approximation for the plasma sheath is included by 
adjusting the height of the calculation space. 

Potential Fields 

The potential fields were found by using the Point 
Gauss-Siedel method to solve the cylindrical difference 
formulation of Laplace's equation in a rectangular grid. 
The depth of the hole is not included in the model. 
Instead it is considered to be a uniformly biased 
conductor. While this may not be reasonable for 
modeling debris damage, it is reasonable for modeling 
the effect of insulation damage when the insulation 
thickness is small compared to the hole radius. The 
insulation is treated as being at the plasma potential, 
o V. This results in a lower boundary having two 
potentials. Inside the hole radius the potential is at the 
bias potential. Outside, it is zero, referenced to the 
plasma potential. The upper boundary is set to the 
plasma potential, zero. 

The potential contours in figure 1 show that the potential 
drops off very rapidly, and the potential contours that 
extend large distances are of low magnitude. The 
potential at about 1 radius from the center of the hole 
drops to 31 % of the appijed voltage. The potential 
varies most rapidly at the edge of the hole. This is the 
region of strongest electric field. Near the hole edge, for 
a negative potential hole, the electric field flux lines go 
up from the surface and down to the hole surface. This 
shows up in the trajectories of particles which nearly 
miss the hole edge but are forced up and into the 
midregion of the hole. 

In order to satisfy Dirichlet-Neumann conditions and 
completely specify the problem, the inner (r=O) and 
outer boundaries must also be specified. The inner 
boundary is a center of cylindrical symmetry, so the 
radial component of the electric field, Er> must be zero. 
The electric field on the outer boundary also approaches 
zero as the radius approaches infinity. For these 
calculations Er is also set to zero at this boundary. 
Unfortunately, the trajectory of particles near the 
boundary are very sensitive to the boundary's existence. 
Particles near the outer boundary tend to fall straight to 
the surface. However, when the boundary is moved 
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away those particles may have a considerably different 
trajectory. For this work the boundary was set far 
enough away from the hole that the focusing factor did 
not change. The trajectory of particles not hitting the 
hole will be incorrect, but that aspect of the problem will 
be irrelevant to the results of this calculation. 

Electric Field 

The electric fields obtained from the potential grid will 
be integrated in the equations of motion to yield particle • 
trajectories. Therefore the interpolated electric field 
within each grid region must be consistent with a 
relatively continuous potential field. Discontinuities in 
the potential field between grid regions can cause the 
integrated kinetic energy accumulated by the particle to 
disagree with that expected from the potential at a point 
and energy will not be conserved. This turns out to be 
especially important near the edge of the hole where the 
potential changes rapidly in one grid spacing and the 
electric field is both large and rapidly varying with 
position. 

To satisfy this criterion, the electric field is evaluated in 
the center of the grid, and using additional interpolated 
potential points the gradient of the electric field 
components are evaluated as illustrated in figure 2. 
Interpolated potential points are evaluated to satisfy 
Laplace's difference equation. That is, they are the 
average of the four surrounding points. Potentials at the 
center of the grid regions, P(r,h) are obtained from the 
potential grid, PU,i). The potential at the center of the 
grid edge, P(r,i) can then be interpolated from the two 
nearby grid centers and the two nearby grid corners. 

The electric field components at the center of the grid 
can now be evaluated from the grid edge potentials and 
the gradients can be evaluated using the comer • 
potentials. The electric field can then be interpolated 
anywhere in the grid region. The electric fields I 

calculated in this way are pinned to reproduce the comer < 

potentials as well as the center of the grid edge. The 
resulting potential field is continuous between grid 
regions through these points, and constrains the rest of 
the edges from being too discontinuous. 

This method does not add new information to the known 
values at the grid points. Rather it uses the known 
values, and interpolates between them in a relatively 
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continuous manner. The procedure could be reiterated 
to generate as continuous a potential field as required. 

Particle Tracking 

Particle Trajectories are found by integrating the 
equation .of motion, a = F /m to obtain velocity (v) and 

• position (r). The electric field, E, is evaluated either for 
calculation purposes relative to the center of the grid 

• region, ro, or, for integration purposes relative to the 
position at the beginning of a time step, reO), 

E(r) = E(r(O» + (r-r(O»ew. 

The acceleration is given by, 

a = q/m [E(r(O» + (r-r(O»eW] 

the velocity is obtained from, 

veT) = v(O) +01 T a dt. 

The fIrst order expansion of E may be used to replace a. 
An integrable estimate of r can be obtained by noting 
that, 

ret) - reO) + v(O)t + q/2m E(r(O)W, 

as long as the term (r(t)-r(O»ew is small compared to 
E(r(O». 
v can be iterated using, 

veT) = yeO) + q/m E(r(O»T 

+ 01 T [v(O)t + q/2m E(r(O»t2]eW dt 

finally, 
veT) = yeO) + qfm E(r(O»T 

+ q/m [V(O)T2/2 

+ q/6m E(r(0»T3]eW 
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similarly, 
reT) = reO) + v(O)T 

+ q/2m E(r(0»T2 

+ q/6m [v(0)T3 

+ q/4m E(r(O»T']eW 

It is possible to take fairly large spatial steps using this 
formulation. The main constraint is to prevent the 
particle from moving too far into the next grid region 
where the extrapolation is not valid. In principle the 
particle could cross the grid in one large time step, then 
be bumped across the edge in the next step. In practice, 
particles were moved about 0.2 grids each time step. An 
estimate of the time step size can be made by solving for 
T in the quadratic equation, 

reT) = reO) + v(O)T 

+ q/2m E(r(O»T2, 

where reT) is evaluated to cross the radially symmetric 
grid in all six directions and the smallest positive T is 
actually used. Particles which pass through the r = 0 line 
are reflected by changing the sign of the radial 
component of the velocity. 

The potential field around the hole has cylindrical 
symmetry, so the angular coordinate becomes important 
only when visualizing the actual three dimensional 
trajectory. However, the angular velocity component 
plays a significant role. Angular effects were accounted 
for by calculating the motion in three dimensions, then 
rotating the coordinate system to find the new r, z, Vr1 vz, 

VB' This technique was tested by tracking a particle with 
no electric field present and ensuring that it followed a 
straight line. 

Implementation of model 

An objective of this effort was to produce a fast 
microcomputer model which could be used to investigate 
ion collection by pin holes. Figure 3 shows the flow of 
the program used. 

Solving the potential field takes a significant amount of 
time, 10 minutes on an Intel 80387 to solve an 80 X 160 
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grid, but this need only be done once. The time can be 
minimized by using as limited a computational grid as 
possible. Solution of the particle trajectories is fast due 
to the semi-analytical approach taken. Typically times 
steps were scaled to cross 0.2ths of a grid region. 

The approximation for r used above to enable 
integration of the acceleration begins to break down 
when (r(t)-r(O». VE is not small compared to E(r(O», as 
is the case near the hole edge. However when this 
occurs the particle is almost certainly collected, though 
the calculated trajectory and impact point may not be 
accurate. A calculation space with a radial dimension 
twenty times the hole size gives sufficiently accurate 
results. 

Velocity Distribution 

The effect of a Maxwellian velocity distribution can be 
addressed by adding incremental velocities to the 
incident velocity representative of the three dimensional 
velocity distribution. The results for each velocity 
element are weighted by the probability of a particle 
having an incident velocity near the tested velocity. 

To calculate a focus factor for a given temperature, the 
three dimensional particle velocity space was broken into 
a grid. Division of the velocity space into approximately 
3000 (18xI8x9) elements yielded a reasonable simulation. 
Only half the 8 velocity is needed due to the symmetry 
of the problem. Each grid element was assigned a 
velocity vector representative of its position and a weight 
of the fraction of particles contained in it. Focus factors 
for each velocity grid element were then obtained. The 
net focus factor is then the sum of the focus 
factor/weight product. 

DISCUSSION 

Focus Factor 

For particles whose initial velocity is normal to the 
surface, the focus factor is easy to fmd. All particles 
emitted from the upper boundary inside a certain radius, 
rC) will be collected. The focus factor, that is the 
enhancement in total current collected is the ratio of the 
collecting area to the hole area, or (rclrb)2. 
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It is interesting that the impact points do not map 
monotonically with the incident radius. As shown in 
figure 4, both for particles near the center and far from 
the edge the further away from the center a particle is 
dropped, the further away it hits. But particles which 
traverse near the edge can end up almost anywhere. 

The following dependencies were investigated for a base 
set of conditions simulating RAM impact conditions for . 
SSF orbits, i.e.: oxygen ions, at normal incidence, with an 
initial velocity corresponding to 4.5 eV, and with a 
temperature of 0.1 eV. 

Energy Dependence 

A qualitative argument can be made to describe the 
focus factor's dependence on incident energy. In this 
model both the upper boundary. (plasma sheath edge) 
and the lower boundary (surface) have the same 
potential. Therefore if the incident particle picks up 
more kinetic energy, due to motion directed parallel to 
the surface, than its initial incident energy, it will not be 
able to reach the lower surface except in the hole. If a 
particle is dropped into the grid with zero velocity and 
temperature, except at the outside edge, it will reach the 
hole and the focus factor is essentially infinite. 

In low earth orbit the focus factors will be smaller than 
those which are observed in ground tests since the ram 
energy of the incident ions is larger than the thermal 
energy of ions used in most ground tests. 

Results of the calculated focus factor as a function of 
incident velocity are shown in figure 5. 

Hole Size and the Plasma Sheath 

The calculations presented here scale with two geometric 
parameters, the hole size relative to both the width and 
height of the calculation space. To obtain meaningful ( 
results the hole size should be small compared to the 
total surface area. Therefore the calculation grid should 
be wide enough that further expansion of the grid does 
not affect the trajectories of those particles which hit or 
nearly hit the hole. 

On the other hand, the height of the calculation space 
indicates a distance above which the electric field is zero. 
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Therefore it performs a function similar to the plasma 
sheath. These results obtained by changing the pinhole 
radius as compared to the sheath thickness are displayed 
in figure 6. 

It is expected that as the hole size becomes large 
compared to the sheath the focus factor will approach 
unity. But in this case the height of the calculation space 

• would be identified as the Child-Langmuir length. As 
the hole gets small compared to the height of the 
calculation space the focus factor will approach a value 
which depends only on incident angle and temperature, 
and incident energy. However, in these simulations, as 
the hole gets even smaller the focus factor drops off 
again. Possibly the particles cannot reach the hole due 
to angular momentum constraints. 

Temperature 

As indicated above, modeling temperature effects 
requires finding focus factors for a large number of 
initial velocities. Particles with high angles of incidence 
may hit the hole from considerable distances away. 
Fortunately these represent a small portion of the 
velocity space. The effect of temperature is shown in 
Figure 7 for two cases. Figure 7a shows a case where 
the temperature is small compared to the incident 
velocity. Figure 7b shows a case with zero incident 
velocity. 

Comparison to Experiment 

Vaughn (ref. 6) has measured ion currents to a pin hole. 
He measured the current to a 0.54 cm diameter hole 
biased at -140 V. The Argon plasma he used had a 
number density of 2xlOu m-3, an electron temperature of 
1.2 eV and an ion energy of 2.0 eV. An ion current of 
0.5 JJA was measured. This suggests a focus factor of 22 
to 78, depending on whether the ion energy is 

> interpreted as a ram velocity or as a temperature. 

The sheath thickness for comparison was estimated by 
finding where 8Eb/8h, from an average potential seen as 
a function of height, is equal to Q / eo from the plasma 
density. A sheath thickness of .018 m was estimated for 
the ram case, and .021 m for the thermal case. This 
model predicts a focus factor of 18 for the ram velocity 
case, and 8.5 for the thermal case. The agreement is 
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good. 

Katz et al (ref.7) have noted that an accurate model 
must include a good model of the sheath edge, and also 
must model the surface potentials near the hole 
accurately. They have noted that the surface near the 
hole is shielded from thermal electrons by the hole's 
negative potential and tends to charge positive. 

CONCLUSION 

The simple pinhole ion collection model presented here 
permits reasonable estimates of focus factors. The 
model uses a solution to Laplace's equation of the 
cylindrically symmetric potential field to evaluate electric 
fields near the hole, then tracks particles to evaluate the 
focus factor. The particles are tracked in three 
dimensions, though the angular coordinate can . be 
ignored. The model permits incident velocities in three 
dimensions and can therefore be used to model 
temperature effects. 

An objective of this work was to provide a fast model pin 
hole collection. Focus factors for specific initial 
velocities are found quickly but temperature calculations 
are time consuming due to the large number of particles 
tracked. 

The present model assumes a level plasma sheath and a 
uniform surface potential. The accuracy of the model 
might be improved by including an analytical model of 
the sheath shape and the surface potential. We intend 
to verify the accuracy of the model further by comparing 
its result with I-V curves obtained in the ion collection 
tests. 
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Figure 4.-Examples of particle trajectories. 
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