38 research outputs found

    Structural insights into RNA processing by the human RISC-loading complex.

    Get PDF
    Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (small interfering RNA (siRNA) or microRNA (miRNA)) onto an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (AGO2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC), which is necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to AGO2. Here, using single-particle EM analysis, we show that human Dicer has an L-shaped structure. The RLC Dicer's N-terminal DExH/D domain, located in a short 'base branch', interacts with TRBP, whereas its C-terminal catalytic domains in the main body are proximal to AGO2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to AGO2

    The human translation initiation multi-factor complex promotes methionyl-tRNAi binding to the 40S ribosomal subunit

    Get PDF
    The delivery of Met-tRNAi to the 40S ribosomal subunit is thought to occur by way of a ternary complex (TC) comprising eIF2, GTP and Met-tRNAi. We have generated from purified human proteins a stable multifactor complex (MFC) comprising eIF1, eIF2, eIF3 and eIF5, similar to the MFC reported in yeast and plants. A human MFC free of the ribosome also is detected in HeLa cells and rabbit reticulocytes, indicating that it exists in vivo. In vitro, the MFC-GTP binds Met-tRNAi and delivers the tRNA to the ribosome at the same rate as the TC. However, MFC-GDP shows a greatly reduced affinity to Met-tRNAi compared to that for eIF2-GDP, suggesting that MFC components may play a role in the release of eIF2-GDP from the ribosome following AUG recognition. Since an MFC–Met-tRNAi complex is detected in cell lysates, it may be responsible for Met-tRNAi–40S ribosome binding in vivo, possibly together with the TC. However, the MFC protein components also bind individually to 40S ribosomes, creating the possibility that Met-tRNAi might bind directly to such 40S-factor complexes. Thus, three distinct pathways for Met-tRNAi delivery to the 40S ribosomal subunit are identified, but which one predominates in vivo remains to be elucidated

    FitEM2EM—Tools for Low Resolution Study of Macromolecular Assembly and Dynamics

    Get PDF
    Studies of the structure and dynamics of macromolecular assemblies often involve comparison of low resolution models obtained using different techniques such as electron microscopy or atomic force microscopy. We present new computational tools for comparing (matching) and docking of low resolution structures, based on shape complementarity. The matched or docked objects are represented by three dimensional grids where the value of each grid point depends on its position with regard to the interior, surface or exterior of the object. The grids are correlated using fast Fourier transformations producing either matches of related objects or docking models depending on the details of the grid representations. The procedures incorporate thickening and smoothing of the surfaces of the objects which effectively compensates for differences in the resolution of the matched/docked objects, circumventing the need for resolution modification. The presented matching tool FitEM2EMin successfully fitted electron microscopy structures obtained at different resolutions, different conformers of the same structure and partial structures, ranking correct matches at the top in every case. The differences between the grid representations of the matched objects can be used to study conformation differences or to characterize the size and shape of substructures. The presented low-to-low docking tool FitEM2EMout ranked the expected models at the top

    A Simplified Positive-Sense-RNA Virus Construction Approach That Enhances Analysis Throughput

    Get PDF
    Here we present an approach that advances the throughput of a genetic analysis of a positive-sense RNA virus by simplifying virus construction. It enabled comprehensive dissection of a complex, multigene phenotype through rapid derivation of a large number of chimeric viruses and construction of a mutant library directly from a virus pool. The versatility of the approach described here expands the applicability of diverse genetic approaches to study these viruses

    Translation Initiation

    No full text

    Assessing gene-level translational control from ribosome profiling

    No full text
    Motivation: The translational landscape of diverse cellular systems remains largely uncharacterized. A detailed understanding of the control of gene expression at the level of messenger RNA translation is vital to elucidating a systems-level view of complex molecular programs in the cell. Establishing the degree to which such post-transcriptional regulation can mediate specific phenotypes is similarly critical to elucidating the molecular pathogenesis of diseases such as cancer. Recently, methods for massively parallel sequencing of ribosome-bound fragments of messenger RNA have begun to uncover genome-wide translational control at codon resolution. Despite its promise for deeply characterizing mammalian proteomes, few analytical methods exist for the comprehensive analysis of this paired RNA and ribosome data. Results: We describe the Babel framework, an analytical methodology for assessing the significance of changes in translational regulation within cells and between conditions. This approach facilitates the analysis of translation genome-wide while allowing statistically principled gene-level inference. Babel is based on an errors-in-variables regression model that uses the negative binomial distribution and draws inference using a parametric bootstrap approach. We demonstrate the operating characteristics of Babel on simulated data and use its gene-level inference to extend prior analyses significantly, discovering new translationally regulated modules under mammalian target of rapamycin (mTOR) pathway signaling control. Availability: The Babel framework is freely available as source code at http://taylorlab.ucsf.edu/software_data.html. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online

    The chaperonin CCT interacts with and mediates the correct folding and activity of three subunits of translation initiation factor eIF3: b, i and h

    No full text
    eIF3 (eukaryotic initiation factor 3) is the largest and most complex eukaryotic mRNA translation factor in terms of the number of protein components or subunits. In mammals, eIF3 is composed of 13 different polypeptide subunits, of which five, i.e. a, b, c, g and i, are conserved and essential in vivo from yeasts to mammals. In the present study, we show that the eukaryotic cytosolic chaperonin CCT [chaperonin containing TCP-1 (tailless complex polypeptide 1)] binds to newly synthesized eIF3b and promotes the correct folding of eIF3h and eIF3i. Interestingly, overexpression of these last two subunits is associated with enhanced translation of specific mRNAs over and above the general enhancement of global translation. In agreement with this, our data show that, as CCT is required for the correct folding of eIF3h and eIF3i subunits, it indirectly influences gene expression with eIF3i overexpression enhancing both cap- and IRES (internal ribosome entry segment)-dependent translation initiation, whereas eIF3h overexpression selectively increases IRES-dependent translation initiation. Importantly, these studies demonstrate the requirement of the chaperonin machinery for the correct folding of essential components of the translational machinery and provide further evidence of the close interplay between the cell environment, cell signalling, cell proliferation, the chaperone machinery and translational apparatus
    corecore