1,588 research outputs found

    Exact renormalisation group flow for ultracold Fermi gases in unitary limit

    Full text link
    We study the exact renormalisation group flow for ultracold Fermi-gases in unitary regime. We introduce a pairing field to describe the formation of the Cooper pairs, and take a simple ansatz for the effective action. Set of approximate flow equations for the effective couplings including boson and fermionic fluctuations is derived. At some value of the running scale, the system undergoes a phase transition to a gapped phase. The values of the energy density, chemical potential, pairing gap and the corresponding proportionality constants relating the interacting and non-interacting Fermi gases are calculated. Standard mean field results are recovered if we omit the boson loops.Comment: 11 pages, Revtex, misprints corrected, references and comments adde

    Quantum simulation and optimization in hot quantum networks

    No full text

    Serum procalcitonin for discrimination of blood contamination from bloodstream infection due to coagulase-negative staphylococci

    Get PDF
    The diagnostic value of serum procalcitonin (PCT) to distinguish blood contamination from bloodstream infection (BSI) due to coagulase-negative staphylococci was evaluated. Patients with BSI had higher PCT concentration than those with blood contamination at day -1, day 0 and day +1 with regard to blood culture collection (p > 0.05), whereas serum C-reactive protein values were significantly higher only on day +1. At a cutoff of 0.1 ng/dl, PCT had a sensitivity of 86% and 100%, and a specificity of 60% and 80% for the diagnosis of BSI on day -1 and 0, respectively. In addition to clinical and microbiological parameters, PCT may help discriminating blood contamination from BSI due coagulase-negative staphylococci

    Serum Procalcitonin for Discrimination of Blood Contamination from Bloodstream Infection due to Coagulase-Negative Staphylococci

    Get PDF
    Abstract : The diagnostic value of serum procalcitonin (PCT) to distinguish blood contamination from bloodstream infection (BSI) due to coagulase-negative staphylococci was evaluated. Patients with BSI had higher PCT concentration than those with blood contamination at day -1, day 0 and day +1 with regard to blood culture collection (p < 0.05), whereas serum C-reactive protein values were significantly higher only on day +1. At a cutoff of 0.1 ng/dl, PCT had a sensitivity of 86% and 100%, and a specificity of 60% and 80% for the diagnosis of BSI on day -1 and 0, respectively. In addition to clinical and microbiological parameters, PCT may help discriminating blood contamination from BSI due coagulase-negative staphylococc

    Mixed population of competing TASEPs with a shared reservoir of particles

    Full text link
    We introduce a mean-field theoretical framework to describe multiple totally asymmetric simple exclusion processes (TASEPs) with different lattice lengths, entry and exit rates, competing for a finite reservoir of particles. We present relations for the partitioning of particles between the reservoir and the lattices: these relations allow us to show that competition for particles can have non-trivial effects on the phase behavior of individual lattices. For a system with non-identical lattices, we find that when a subset of lattices undergoes a phase transition from low to high density, the entire set of lattice currents becomes independent of total particle number. We generalize our approach to systems with a continuous distribution of lattice parameters, for which we demonstrate that measurements of the current carried by a single lattice type can be used to extract the entire distribution of lattice parameters. Our approach applies to populations of TASEPs with any distribution of lattice parameters, and could easily be extended beyond the mean-field case.Comment: 12 pages, 8 figure

    Diffusion algebras

    Full text link
    We define the notion of "diffusion algebras". They are quadratic Poincare-Birkhoff-Witt (PBW) algebras which are useful in order to find exact expressions for the probability distributions of stationary states appearing in one-dimensional stochastic processes with exclusion. One considers processes in which one has N species, the number of particles of each species being conserved. All diffusion algebras are obtained. The known examples already used in applications are special cases in our classification. To help the reader interested in physical problems, the cases N=3 and 4 are listed separately.Comment: 29 pages; minor misprints corrected, few references adde

    Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement

    Full text link
    Identifying strongly connected substructures in large networks provides insight into their coarse-grained organization. Several approaches based on the optimization of a quality function, e.g., the modularity, have been proposed. We present here a multistep extension of the greedy algorithm (MSG) that allows the merging of more than one pair of communities at each iteration step. The essential idea is to prevent the premature condensation into few large communities. Upon convergence of the MSG a simple refinement procedure called "vertex mover" (VM) is used for reassigning vertices to neighboring communities to improve the final modularity value. With an appropriate choice of the step width, the combined MSG-VM algorithm is able to find solutions of higher modularity than those reported previously. The multistep extension does not alter the scaling of computational cost of the greedy algorithm.Comment: 7 pages, parts of text rewritten, illustrations and pseudocode representation of algorithms adde

    The solution space of metabolic networks: producibility, robustness and fluctuations

    Get PDF
    Flux analysis is a class of constraint-based approaches to the study of biochemical reaction networks: they are based on determining the reaction flux configurations compatible with given stoichiometric and thermodynamic constraints. One of its main areas of application is the study of cellular metabolic networks. We briefly and selectively review the main approaches to this problem and then, building on recent work, we provide a characterization of the productive capabilities of the metabolic network of the bacterium E.coli in a specified growth medium in terms of the producible biochemical species. While a robust and physiologically meaningful production profile clearly emerges (including biomass components, biomass products, waste etc.), the underlying constraints still allow for significant fluctuations even in key metabolites like ATP and, as a consequence, apparently lay the ground for very different growth scenarios.Comment: 10 pages, prepared for the Proceedings of the International Workshop on Statistical-Mechanical Informatics, March 7-10, 2010, Kyoto, Japa
    corecore