630 research outputs found

    Consciousness and the Wigner's friend problem

    Full text link
    It is generally agreed that decoherence theory is, if not a complete answer, at least a great step forward towards a solution of the quantum measurement problem. It is shown here however that in the cases in which a sentient being is explicitly assumed to take cognizance of the outcome the reasons we have for judging this way are not totally consistent, so that the question has to be considered anew. It is pointed out that the way the Broglie-Bohm model solves the riddle suggests a possible clue, consisting in assuming that even very simple systems may have some sort of a proto-consciousness, but that their ``internal states of consciousness'' are not predictive. It is, next, easily shown that if we imagine the systems get larger, in virtue of decoherence their internal states of consciousness progressively gain in predictive value. So that, for macro-systems, they may be identified (in practice) with the predictive states of consciousness on which we ground our observational predictions. The possibilities of carrying over this idea to standard quantum mechanics are then investigated. Conditions of conceptual consistency are considered and found rather strict, and, finally, two solutions emerge, differing conceptually very much from one another but in both of which the, possibly non-predictive, generalized internal states of consciousness play a crucial role

    Elastic Correlations in Nucleosomal DNA Structure

    Full text link
    The structure of DNA in the nucleosome core particle is studied using an elastic model that incorporates anisotropy in the bending energetics and twist-bend coupling. Using the experimentally determined structure of nucleosomal DNA [T.J. Richmond and C.A. Davey, Nature {\bf 423}, 145 (2003)], it is shown that elastic correlations exist between twist, roll, tilt, and stretching of DNA, as well as the distance between phosphate groups. The twist-bend coupling term is shown to be able to capture these correlations to a large extent, and a fit to the experimental data yields a new estimate of G=25 nm for the value of the twist-bend coupling constant

    Predicting polydisperse granular segregation

    Get PDF
    Most granular materials in industrial applications and natural settings are size-polydisperse, but most models and simulations of segregation consider only bidisperse particle distributions. Here, we extend our recently developed theoretical advection–diffusion–segregation model to polydisperse particle distributions. To test the theoretical approach, we model and simulate grains log-normally distributed by size in a chute flow. In steady state, material near the free surface is dominated by large particles, whereas the lower regions are composed of mostly small particles. The segregation pattern depends on a single dimensionless control parameter, which is a function of the particle sizes, the diffusion coefficient, the shear rate, and the flowing layer depth. Interestingly, for all values of the control parameter, the overall log normal particle size distribution is approximately maintained at each spatial location, but with different mean and variance than the overall particle distribution. To confirm the theoretical results, we use discrete element method (DEM) simulations using a general purpose graphics processing unit. Quantitative agreement is found between theory and DEM simulations. Funded by the Dow Chemical Company

    Local Simulation Algorithms for Coulombic Interactions

    Full text link
    We consider dynamically constrained Monte-Carlo dynamics and show that this leads to the generation of long ranged effective interactions. This allows us to construct a local algorithm for the simulation of charged systems without ever having to evaluate pair potentials or solve the Poisson equation. We discuss a simple implementation of a charged lattice gas as well as more elaborate off-lattice versions of the algorithm. There are analogies between our formulation of electrostatics and the bosonic Hubbard model in the phase approximation. Cluster methods developed for this model further improve the efficiency of the electrostatics algorithm.Comment: Proceedings Statphys22 10 page

    Tumour necrosis factor production and natural killer cell activity in peripheral blood during treatment with recombinant tumour necrosis factor.

    Get PDF
    Tumour necrosis factor (TNF) has been found to be an important immunomodulator. Among other functions TNF activates natural killer (NK) cells and stimulates monocytes/macrophages in an autocrine fashion. TNF production and NK activity in peripheral blood mononuclear cells were determined in a clinical phase I study in which recombinant human (rh) TNF was administered as a continuous infusion weekly for a period of 8 weeks. Even though TNF production and NK activity were significantly reduced directly after rhTNF infusion the effect proved to be transient and most pronounced at the first rhTNF administration. One day after completion of the rhTNF infusion the peripheral cells released more TNF into the supernatant compared to TNF activity immediately before the rhTNF infusion. This effect was conspicuous in non-stimulated cultures. After repeated rhTNF infusions both stimulated and non-stimulated TNF production of the peripheral blood mononuclear cells was increased. NK cell activity was also enhanced after repeated cycles of rhTNF administration as compared to early rhTNF treatment. Thus, repeated rhTNF infusions lead to a stimulatory effect on TNF production and NK activity of peripheral blood cells

    Influence of a knot on the strength of a polymer strand

    Full text link
    Many experiments have been done to determine the relative strength of different knots, and these show that the break in a knotted rope almost invariably occurs at a point just outside the `entrance' to the knot. The influence of knots on the properties of polymers has become of great interest, in part because of their effect on mechanical properties. Knot theory applied to the topology of macromolecules indicates that the simple trefoil or `overhand' knot is likely to be present with high probability in any long polymer strand. Fragments of DNA have been observed to contain such knots in experiments and computer simulations. Here we use {\it ab initio} computational methods to investigate the effect of a trefoil knot on the breaking strength of a polymer strand. We find that the knot weakens the strand significantly, and that, like a knotted rope, it breaks under tension at the entrance to the knot.Comment: 3 pages, 4 figure

    Context Preserving Focal Probes for Exploration of Volumetric Medical Datasets

    Get PDF
    During real-time medical data exploration using volume rendering, it is often difficult to enhance a particular region of interest without losing context information. In this paper, we present a new illustrative technique for focusing on a user-driven region of interest while preserving context information. Our focal probes define a region of interest using a distance function which controls the opacity of the voxels within the probe, exploit silhouette enhancement and use non-photorealistic shading techniques to improve shape depiction.187-19

    Conformations of closed DNA

    Full text link
    We examine the conformations of a model for a short segment of closed DNA. The molecule is represented as a cylindrically symmetric elastic rod with a constraint corresponding to a specification of the linking number. We obtain analytic expressions leading to the spatial configuration of a family of solutions representing distortions that interpolate between the circular form of DNA and a figure-eight form that represents the onset of interwinding. We are also able to generate knotted loops. We suggest ways to use our approach to produce other configurations relevant to studies of DNA structure. The stability of the distorted configurations is assessed, along with the effects of fluctuations on the free energy of the various configurations.Comment: 39 pages in REVTEX with 14 eps figures. Submitted to Phys. Rev. E. This manuscript updates, expands and revises, to a considerable extent, a previously posted manuscript, entitled "Conformations of Circular DNA," which appeared as cond-mat/970104
    • …
    corecore