2,617 research outputs found

    Modeling impacts of farming management alternatives on CO2, CH4, and N2O emissions: A case study for water management of rice agriculture of China

    Get PDF
    Since the early 1980s, water management of rice paddies in China has changed substantially, with midseason drainage gradually replacing continuous flooding. This has provided an opportunity to estimate how a management alternative impacts greenhouse gas emissions at a large regional scale. We integrated a process-based model, DNDC, with a GIS database of paddy area, soil properties, and management factors. We simulated soil carbon sequestration (or net CO2 emission) and CH4 and N2O emissions from China\u27s rice paddies (30 million ha), based on 1990 climate and management conditions, with two water management scenarios: continuous flooding and midseason drainage. The results indicated that this change in water management has reduced aggregate CH4 emissions about 40%, or 5 Tg CH4 yr−1, roughly 5–10% of total global methane emissions from rice paddies. The mitigating effect of midseason drainage on CH4 flux was highly uneven across the country; the highest flux reductions (\u3e200 kg CH4-C ha−1 yr−1) were in Hainan, Sichuan, Hubei, and Guangdong provinces, with warmer weather and multiple-cropping rice systems. The smallest flux reductions (\u3c25 kg CH4-C ha−1 yr−1) occurred in Tianjin, Hebei, Ningxia, Liaoning, and Gansu Provinces, with relatively cool weather and single cropping systems. Shifting water management from continuous flooding to midseason drainage increased N2O emissions from Chinese rice paddies by 0.15 Tg N yr−1 (∼50% increase). This offset a large fraction of the greenhouse gas radiative forcing benefit gained by the decrease in CH4 emissions. Midseason drainage-induced N2O fluxes were high (\u3e8.0 kg N/ha) in Jilin, Liaoning, Heilongjiang, and Xinjiang provinces, where the paddy soils contained relatively high organic matter. Shifting water management from continuous flooding to midseason drainage reduced total net CO2emissions by 0.65 Tg CO2-C yr−1, which made a relatively small contribution to the net climate impact due to the low radiative potential of CO2. The change in water management had very different effects on net greenhouse gas mitigation when implemented across climatic zones, soil types, or cropping systems. Maximum CH4 reductions and minimum N2O increases were obtained when the mid-season draining was applied to rice paddies with warm weather, high soil clay content, and low soil organic matter content, for example, Sichuan, Hubei, Hunan, Guangdong, Guangxi, Anhui, and Jiangsu provinces, which have 60% of China\u27s rice paddies and produce 65% of China\u27s rice harvest

    Reduced methane emissions from large-scale changes in water management of China’s rice paddies during 1980-2000

    Get PDF
    Decreased methane emissions from paddy rice may have contributed to the decline in the rate of increase of global atmospheric methane (CH4) concentration over the last 20 years. In China, midseason paddy drainage, which reduces growing season CH4 fluxes, was first implemented in the early 1980s, and has gradually replaced continuous flooding in much of the paddy area. We constructed a regional prediction for China\u27s rice paddy methane emissions using the DNDC biogeochemical model. Results of continuous flooding and midseason drainage simulations for all paddy fields in China were combined with regional scenarios for the timing of the transition from continuous flooding to predominantly mid-season drainage to generate estimates of total methane flux for 1980–2000. CH4 emissions from China\u27s paddy fields were reduced over that period by ∼5 Tg CH4 yr−1

    Quantification of Ophthalmic Changes After Long-Duration Spaceflight, and Subsequent Recovery

    Get PDF
    A subset of crewmembers are subjected to ophthalmic structure changes due to long-duration spaceflight (>6 months). Crewmembers who experience these changes are described as having Spaceflight Associated Neuro-Ocular Syndrome (SANS). Characteristics of SANS include optic disk edema, cotton wool spots, choroidal folds, refractive error, and posterior globe flattening. SANS remains a major obstacle to deep-space and planetary missions, requiring a better understanding of its etiology. Quantification of ocular, structural changes will improve our understanding of SANS pathophysiology. Methods were developed to quantify 3D optic nerve (ON) and ON sheath (ONS) geometries, ON tortuosity, and posterior globe deformation using MR imaging

    Greenhouse gas emissions from croplands of China

    Get PDF
    China possesses cropland of 1.33 million km 2. Cultivation of the cropland not only altered the biogeochemical cycles of carbon (C) and nitrogen (N) in the agroecosystems but also affected global climate. The impacts of agroecosystems on global climate attribute to emissions of three greenhouse gases, namely carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)

    Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials

    Get PDF
    The research testing and demonstration of new bulk-fill materials for cryogenic thermal insulation systems was performed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. Thermal conductivity testing under actual-use cryogenic conditions is a key to understanding the total system performance encompassing engineering, economics, and materials factors. A number of bulk fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, were tested using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boil-off method were 293 K and 78 K. Tests were performed as a function of cold vacuum pressure from high vacuum to no vacuum conditions. Results are compared with other complementary test methods in the range of 300 K to 20 K. Various testing techniques are shown to be required to obtain a complete understanding of the operating performance of a material and to provide data for answers to design engineering questions

    Experimental Control and Characterization of Autophagy in Drosophila

    Get PDF
    Insects such as the fruit fly Drosophila melanogaster, which fundamentally reorganize their body plan during metamorphosis, make extensive use of autophagy for their normal development and physiology. In the fruit fly, the hepatic/adipose organ known as the fat body accumulates nutrient stores during the larval feeding stage. Upon entering metamorphosis, as well as in response to starvation, these nutrients are mobilized through a massive induction of autophagy, providing support to other tissues and organs during periods of nutrient deprivation. High levels of autophagy are also observed in larval tissues destined for elimination, such as the salivary glands and larval gut. Drosophila is emerging as an important system for studying the functions and regulation of autophagy in an in vivo setting. In this chapter we describe reagents and methods for monitoring autophagy in Drosophila, focusing on the larval fat body. We also describe methods for experimentally activating and inhibiting autophagy in this system and discuss the potential for genetic analysis in Drosophila to identify novel genes involved in autophagy

    Total Hydrocarbon Content (THC) Testing in Liquid Oxygen (LOX)

    Get PDF
    The measured Total Hydrocarbon Content (THC) levels in liquid oxygen (LOX) systems at Stennis Space Center (SSC) have shown wide variations. Examples of these variations include the following: 1) differences between vendor-supplied THC values and those obtained using standard SSC analysis procedures; and 2) increasing THC values over time at an active SSC test stand in both storage and run vessels. A detailed analysis of LOX sampling techniques, analytical instrumentation, and sampling procedures will be presented. Additional data obtained on LOX system operations and LOX delivery trailer THC values during the past 12-24 months will also be discussed. Field test results showing THC levels and the distribution of the THC's in the test stand run tank, modified for THC analysis via dip tubes, will be presented

    Physics Based Model for Cryogenic Chilldown and Loading. Part III: Correlations

    Get PDF
    In this report we discuss the details of the correlations used to recognize flow patterns and predict frictional losses, heat and mass transfer in the cryogenic two phase flow. The emphasis are put on the formulation of the correlation problem in terms of concise parametric and functional spaces allowing for efficient online search of the model parameters and accurate prediction of the phenomena observed during cryogenic loading. A special attention is paid to the discussion of the correlation dependence on the gravity. In this context the physics of stability, friction, and boiling in the two-phase flow that underlies the required correlations is discussed

    Physikalische Parameter extrakorporaler Stoßwellen

    Get PDF
    Prerequisites for the successful investigation of the mechanism of action of ESWT (extracorporeal shockwave therapy) and the establishment of treatment standards, are the ability to measure, and a knowledge of, the physical parameters involved. The most accurate measurements are obtained with laser hydrophones. Various parameters (amplitude, rise time, pulse width, pressure pulse decay, rarification phase) of a typical shock wave can thus be determined. These can then be used to calculate energy flux density, focal extent, focal volume and as well as focal energy, effective energy in a defined area, and effective biological energy. These parameters can be utilized to work out a theoretical treatment protocol
    corecore