10,595 research outputs found
Design sensitivity analysis of nonlinear structural response
A unified theory is described of design sensitivity analysis of linear and nonlinear structures for shape, nonshape and material selection problems. The concepts of reference volume and adjoint structure are used to develop the unified viewpoint. A general formula for design sensitivity analysis is derived. Simple analytical linear and nonlinear examples are used to interpret various terms of the formula and demonstrate its use
On the NP-Hardness of Approximating Ordering Constraint Satisfaction Problems
We show improved NP-hardness of approximating Ordering Constraint
Satisfaction Problems (OCSPs). For the two most well-studied OCSPs, Maximum
Acyclic Subgraph and Maximum Betweenness, we prove inapproximability of
and .
An OCSP is said to be approximation resistant if it is hard to approximate
better than taking a uniformly random ordering. We prove that the Maximum
Non-Betweenness Problem is approximation resistant and that there are width-
approximation-resistant OCSPs accepting only a fraction of
assignments. These results provide the first examples of
approximation-resistant OCSPs subject only to P \NP
Lately Exposed Amorphous Water Ice on Comet 49P/Arend-Rigaux
Comet 49P/ Arend-Rigaux, thought to be a low activity comet since the 1980's
was found to be active in its recent apparitions. Recent analysis of the data
obtained from Spitzer observation of the comet in 2006 compared with laboratory
spectra has revealed amorphous water ice on the surface. In addition, in 2012 a
jet was found to appear during its subsequent perihelion passage as witnessed
during an observation carried out on 26th March 2012 using the PRL telescope at
Mt. Abu. This confirms recent activity of Comet 49P/Arend-Rigaux due to the
volatile subsurface materials exposed after several passages close to the Sun.
Our result confirms the subsurface ices on cometary nuclei and insists for more
observations for a better understanding
Stable Frank-Kasper phases of self-assembled, soft matter spheres
Single molecular species can self-assemble into Frank Kasper (FK) phases,
finite approximants of dodecagonal quasicrystals, defying intuitive notions
that thermodynamic ground states are maximally symmetric. FK phases are
speculated to emerge as the minimal-distortional packings of space-filling
spherical domains, but a precise quantitation of this distortion and how it
affects assembly thermodynamics remains ambiguous. We use two complementary
approaches to demonstrate that the principles driving FK lattice formation in
diblock copolymers emerge directly from the strong-stretching theory of
spherical domains, in which minimal inter-block area competes with minimal
stretching of space-filling chains. The relative stability of FK lattices is
studied first using a diblock foam model with unconstrained particle volumes
and shapes, which correctly predicts not only the equilibrium {\sigma} lattice,
but also the unequal volumes of the equilibrium domains. We then provide a
molecular interpretation for these results via self-consistent field theory,
illuminating how molecular stiffness regulates the coupling between
intra-domain chain configurations and the asymmetry of local packing. These
findings shed new light on the role of volume exchange on the formation of
distinct FK phases in copolymers, and suggest a paradigm for formation of FK
phases in soft matter systems in which unequal domain volumes are selected by
the thermodynamic competition between distinct measures of shape asymmetry.Comment: 40 pages, 22 figure
Strong inapproximability of the shortest reset word
The \v{C}ern\'y conjecture states that every -state synchronizing
automaton has a reset word of length at most . We study the hardness
of finding short reset words. It is known that the exact version of the
problem, i.e., finding the shortest reset word, is NP-hard and coNP-hard, and
complete for the DP class, and that approximating the length of the shortest
reset word within a factor of is NP-hard [Gerbush and Heeringa,
CIAA'10], even for the binary alphabet [Berlinkov, DLT'13]. We significantly
improve on these results by showing that, for every , it is NP-hard
to approximate the length of the shortest reset word within a factor of
. This is essentially tight since a simple -approximation
algorithm exists.Comment: extended abstract to appear in MFCS 201
Accurate determination of electric-dipole matrix elements in K and Rb from Stark shift measurements
Stark shifts of potassium and rubidium D1 lines have been measured with high
precision by Miller et al [1]. In this work, we combine these measurements with
our all-order calculations to determine the values of the electric-dipole
matrix elements for the 4p_j-3d_j' transitions in K and for the 5p_j-4d_j'
transitions in Rb to high precision. The 4p_1/2-3d_3/2 and 5p_1/2-4d_3/2
transitions contribute on the order of 90% to the respective polarizabilities
of the np_1/2 states in K and Rb, and the remaining 10% can be accurately
calculated using the relativistic all-order method. Therefore, the combination
of the experimental data and theoretical calculations allows us to determine
the np-(n-1)d matrix elements and their uncertainties. We compare these values
with our all-order calculations of the np-(n-1)d matrix elements in K and Rb
for a benchmark test of the accuracy of the all-order method for transitions
involving nd states. Such matrix elements are of special interest for many
applications, such as determination of magic wavelengths in alkali-metal atoms
for state-insensitive cooling and trapping and determination of blackbody
radiation shifts in optical frequency standards with ions.Comment: 5 page
Smoothed Analysis of Tensor Decompositions
Low rank tensor decompositions are a powerful tool for learning generative
models, and uniqueness results give them a significant advantage over matrix
decomposition methods. However, tensors pose significant algorithmic challenges
and tensors analogs of much of the matrix algebra toolkit are unlikely to exist
because of hardness results. Efficient decomposition in the overcomplete case
(where rank exceeds dimension) is particularly challenging. We introduce a
smoothed analysis model for studying these questions and develop an efficient
algorithm for tensor decomposition in the highly overcomplete case (rank
polynomial in the dimension). In this setting, we show that our algorithm is
robust to inverse polynomial error -- a crucial property for applications in
learning since we are only allowed a polynomial number of samples. While
algorithms are known for exact tensor decomposition in some overcomplete
settings, our main contribution is in analyzing their stability in the
framework of smoothed analysis.
Our main technical contribution is to show that tensor products of perturbed
vectors are linearly independent in a robust sense (i.e. the associated matrix
has singular values that are at least an inverse polynomial). This key result
paves the way for applying tensor methods to learning problems in the smoothed
setting. In particular, we use it to obtain results for learning multi-view
models and mixtures of axis-aligned Gaussians where there are many more
"components" than dimensions. The assumption here is that the model is not
adversarially chosen, formalized by a perturbation of model parameters. We
believe this an appealing way to analyze realistic instances of learning
problems, since this framework allows us to overcome many of the usual
limitations of using tensor methods.Comment: 32 pages (including appendix
On Generalizations of Network Design Problems with Degree Bounds
Iterative rounding and relaxation have arguably become the method of choice
in dealing with unconstrained and constrained network design problems. In this
paper we extend the scope of the iterative relaxation method in two directions:
(1) by handling more complex degree constraints in the minimum spanning tree
problem (namely, laminar crossing spanning tree), and (2) by incorporating
`degree bounds' in other combinatorial optimization problems such as matroid
intersection and lattice polyhedra. We give new or improved approximation
algorithms, hardness results, and integrality gaps for these problems.Comment: v2, 24 pages, 4 figure
- …
