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ABSTRACT

This paper describes a unified theory of design sensitivity analysis of linear

and nonlinear structures for shape, nonshape and material selection problems. The

concepts of reference volume and adjoint structure are used to develop the unified

viewpoint. A general formula for design sensitivity analysis is derived. Simple

analytical linear and nonlinear examples are used to interpret various terms of the

formula and demonstrate its use.

I. INTRODUCTION

Design sensitivity analysis gives trend information that can be used in the

conventional or optimal design process. The subject, therefore, has received

considerable attention in recent years. For a thorough review of the subject Refs.

I and 2 should be consulted.

The present paper describes a unified variational theory of design sensitivity

analysis of linear and nonlinear structures (geometric as well as physical non-

linearities) including shape, nonshape and material selection problems. The adjoint

variable approach is utilized although the direct differentiation method can be also

easily developed. In Section 2, equations of continuum mechanics for nonlinear

analysis are summarized. They are needed in design sensitivity analysis. A unified

viewpoint for shape and nonshape design sensitivity analysis is described in Section

3. The concept of a reference volume is explained in Section 4. The variational

theory of design sensitivity analysis using adjoint variable approach is developed

in Section 5. The theory is used to solve several simple analytical problems in

Section 6. Finally concluding remarks are given in Section 7.

2. NONLINEAR ANALYSIS

Nonlinearities in structural systems can be due to large displacements, large

strains, material behavior and boundary conditions. Consistent theories to treat

these nonlinearities have been developed 3,4 We will use the developments and

notations of Ref. 4, and follow the Total Lagrangian (or Lagrangian) formulation,

although updated Lagrangian formulation can also be used. One of the major diffi-

culties in describing nonlinear analysis is the complexity of notation. We will

mostly use standard symbols from the literature for various quantities. Matrix and
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tensor notations will be used. One major departure from linear analysis is that

quantities must be measured in a deformed configuration. Also, a reference con-

figuration for the quantities must be defined. We will use a left superscript to

indicate the configuration in which the quantity occurs and a left subscript to

indicate the reference configuration.

A starting point for theory of nonl{near analysis is the principle of virtual

work for the body in the deformed configuration at time t (load level t):

fO V f0 V t 6 tu OdF T 0
t t t .6tu 0dV - fO 0T" --
0S.60 E 0dV - O f FT

(I)

where left subscript 0 refers to the undeformed configuration, a ' ' refers to the

standard tensor product and

0V = undeformed volume of the body

t Second Piola-Kirchhoff stress tensor
0S =

t

0 e -- Green-Lagrange strain tensor

t

Of = body force per unit volume

tu = displacement field

tT -- surface traction specified on part of the surface FT
0

OF = surface of the body

-- variation in the state fields

Let u0 be the specified displacement on the part Fu of the surface. The variations

of the state fields in Eq. (I) are arbitrary but kinematically admissible. They can

be replaced by any kinematically admissible fields. In particular they will be

replaced by adjoint structure state fields in later derivations. The virtual work

equation can also be written using Cauchy stress tensor and other quantities

referred to the deformed configuration. Transformation can be used to recover

Cauchy stresses from second Piola-Kirchhoff stresses and vice versa. However, in all

the derivations given in this paper we will use the undeformed configuration as the

reference configuration.

The Green-Lagrange strain tensor is given as

= Ir t T , t ]T]tOE v U +[0v U J + (oVtUT] (0Vtu T (2)

The nonlinear stress strain law, in general, can be written as

t t
0S = _%(0e,b) (3)

where b is a design variable. Note that for many applications, functional form

for _ is not known. In numerical implementations, the explicit form is not

needed. Only an incremental stress-strain relation is required.
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Equations (I) to (3) are nonlinear in the displacement field tu. There are
several methods for solving such system of equations. 5 The incremental/iterative
procedure based on Newtonmethods is the most commonlyused and effective procedure.
This will be summarized here. In the derivation of the procedure, it is assumed
that equilibrium is known at t and it is desired at t+At. The state fields are

4
decomposedas

t t+At_ t 0et+Atu -- u + u; 03 -- 0 S + 0S; 0S = ¢,e

t+At- t + of; t+At_ t + oTt+Ate _-te + 0E ' 0r -- 0f Or = 0T (4)

where u : increment in the displacement field

0S : increment in the Second Piola-Kirchhoff stress

0e : increment in the Green-Lagrange strain

Of = increment in the body force

0T -- increment in the surface traction

Variation of the strain field is given as

6t+At
Oe- - 60E (5)

The incremental strain field from Eq. (2) is given as

0e= 0e+ On
(6)

= Ir T _ _T_T - T
0e _[0 vu +_0 vu J +[oVU )(oVtJ)T+(oVtU T) (oVuT) T]

(7)

0n = I[(oVUT) (0vuT)T] (8)

Substituting Eqs. (4) - (6) in the virtual work principle, Eq. (I), written at t+At

and using the fact that state at t is in equilibrium, we obtain the following incre-

mental virtual work principle:

f(ts + 0S).60 e Odv - _of.6u Odv - 10T.6u 0dr T = 0
(9)

Equation (9) is still a nonlinear in incremental displacement field u.

linearized by assuming

6OE = 60e; 0S = ¢,E.0 e

It is

(IO)

and iteration is used within the load increment to satisfy the equilibrium exactly

at t+At. The finite element procedure has been used to implement the preceding

6
equations into a computer program ADINA.
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3. UNIFICATION OF DI_NSIONAL AND

SHAPE DKSION SENSITIVITY ANALYSIS

In the literature, shape and dimension design sensitivity analysis problems

have been treated independently. In the shape problem, domain of the problem is

allowed to vary whereas in the dimensional problem domain is fixed but cross-

sectional dimensions are allowed to vary. It will be seen here that when varia-

tional formulation is used and volume integrals are used, there is no distinction

between the two problems.

Consider the general functional requiring design sensitivity analysis:

= fOv fo F ^ h(tu,b_(ts,_e tu,b)Odv + [(t b)OdF + fu • )OdFT
(b)O ' u(b)O T' u FT(b )

(11)

It can be seen that when design b is changed, the volume of the body as well as its

surface change. As examples, consider optimal design of two simple bodies shown in

Fig. I. Are these shape or dimensional optimization problems? Our contention is

that although length of the members is not treated as a design variable in these

problems, volume of the body changes whenever any of the indicated design variables

is changed. We must account for variations of the domain of the body while wrLting

variations of the functional _ in Eq. (11). Thus the variational concept for design

sensitivity analysis is slightly different from the corresponding concept used in

purely analysis problems where domain of the body remains fixed (at least in linear

problems). This distinction is important in maintaining generality of the varia-

tional design sensitivity analysis theory where variation of the domain should be

always considered.
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DESIGN VARIABLE: A(x)
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DESIGN VARIABLES" W(x), d(x)

Figure 1. Examples of Optimal Design
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4. CONCEPT OF REFERENCE VOLUI_

The concept of a reference volume is extremely useful in problems where the

volume of the body is changing. The idea, introduced recently in Ref. 7, is to map

volume of the body in various configurations to a reference volume V. This is shown

in Fig. 2. The original volume of the body Ov(bO) moves to a volume tv(bO) under a

nonlinear motion. However, both the volumes can be mapped to the fixed reference

volume V under the mappings F1(bO) and F2(bO) respectively. The design process

changes shape of the body so that its volume becomes Ov(bl) at the new design b I.

This volume moves to tV(b I) under the nonlinear motion. Both these volumes can also

be mapped to the fixed reference volume V.

The concept of reference volume is also quite useful in design sensitivity

analysis. All the integrals of the problem are transformed to the reference volume

using the proper transformation of the independent variables. The mapping to the

fixed volume keeps changing under state or design variations. However, the refer-

ence volume never changes. Thus, when variations of various integrals are taken,

the variations of the reference volume need not be considered. In numerical imple-

mentations, this concept is also very useful. It allows us to discretize the design

problem into design elements that keep the same shape even when the real shape for

t£

0

°V(b°)

tV(b°)

F2

°V(b 1 )

£
F4

4/
tV(bl)

Figure 2. Concept of Reference Volume
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the structure changes during the optimization process.
independent variables, various expressions are given as

Virtual Work Equation at Load Level t:

Using the transformation of

Sts._E J dV- Stf.6tu J dV- StT.6t. J dFT = 0 (12)

Incremental Virtual Work Equation at Load Level t+At:

S(ts+oS).%_ J d_- Sof._,, j d[- SoT._,,J drT : o (13)

Green-Lagrange Strain Tensor:

0C = I[XT(rVtuT) + (rVtuT)Tx + _T(r vtJ) (rvtuT)TX] (14)

Incremental Strains:

0e = l[_T(rVg ) + (rVJ)T_ + _T(rVuT) (rVtT)T_

+ _T(rVJ) (rVtuT)T_] (15)

On -- I[XT(rVuT ) (rVuT)Tx] (16)

Functional for Sensitivity Analysis:

= S t t t ,b) J dF + S h(tU,b) J dF TG(0S,0¢,tu,b) J dV * S g(o T u (17)

Jacobian of Transformation:

X-- 3(Ox'0y'0z) ; J Ixl; _ x-1 I_T= = ; J = J n[ (18)
8(rx ,r ry, z)

In the_above equations superscript or subscript r refers to the reference coordi-

nates, J is the area metric, and n is the unit surface normal. Note that all

quantities in the above integrals are functions of the reference coordinates. Also

for oriented bodies such as bars and beams, J and IXI may be different from each

other if we use volume integrals throughout the sensitivity analysis. This can be

observed in the examples discussed later in the paper.

5. ADJOINT STRUCTURE APPROACH FOR

(ENERAL DESIGN SENSITIVITY ANALYSIS

Discrete form of the adjoint variable method has been discussed by several

researchers. 1'8-13 Variational form of the approach based on material derivative
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concept is described in Ref. 13 where sensitivity with respect to shape variations

is also considered. Adjoint structure approach is described in Refs. 14-17. The

approach has been applied to some nonlinear and shape variation problems in Refs.

18-20. Recently, Belegundu 21 has traced roots of the adjoint variable method to

methods of sensitivity analysis in optimal control literature. In addition, he has

shown that sensitivity analysis methods for static, dynamic, shape and distributed

parameter problems can be viewed as the general Lagrange multiplier method. This

shows that the adjoint variable is also a Lagrange multiplier for the state

equations which gives a sensitivity interpretation for it. 22 This interpretation is

extremely useful and leads to some insights into the adjoint variable method. It

also has implications in practical applications and numerical implementations of the

method.

In the following derivation we combine the adjoint structure approach with the

fixed reference volume concept to develop a general theory of design sensitivity

analysis of linear or nonlinear structures. To avoid confusion, we use 6 and 6 to

indicate arbitrary variations of the state fields and variations with respect to

design variable, respectively. Also, the notation G,S will be used to indicate

partial derivative of G with respect to t0S" Note that design sensitivity analysis

is performed at the final state of the system denoted by left superscript t on

various variables. Thus the virtual work equation (12) holds for the deformed

conf igur at ion.

Now taking variation of the functional @ in Eq. (17) with respect to design, we

obtain

u

f g _Jdru ÷ y h 6Jdrr + f_hJ drT ÷ _ (19)

where 6_I represents implicit design variation of _ given as

-t -t .6tu) J dV_*I = f(c s._os + o, .6o_+ c,u

+ f g,T.6tT J dF u + f h,u.6tul J drT (20)

The basic idea of the adjoint structure approach is to replace the implicit design

variations of the state fields in Eq. (20) by explicit design variations and the

adjoint state fields. To accomplish this we write design variations of various

equations as follows:

Design Variations of the Constitutive Law (Eq. 3):

_0 S= ¢ E" _t + _ (21)
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Design Variations of Strains:

where

_e = I[_T(rV_tT ) + (rV_tT)T_

(22)

+ + VtuT) (rV6tuT)Tx]xT(rV_tT ) (rVtuT)Tx XT(r (23)

=t I[_:T (r60c = vtu T) + (rVtuT) T _X

+ vtuT)T _:]+ _Xr (rVtuT) (rvtuT )T_ _T (rVtuT) (r (24)

Here 6 represents implicit design variations of the

explicit design variations of the strain fields.

Design Variations of Equilibrium Equation (12):

di spl acem ent s and _ the

f 60s.ca J dV + f _S.6ca J dV + f t0s.Ea _j dV - f _t0f.ua J dV

_ f t a _T.u a t ao1".,, _J d_ - J" J drT - j" oT.,, _ d7T = o (25)

where arbitrary variations of the primary state fields in Eq. (12) have been

replaced by the corresponding fields for the adjoint structure denoted by the

superscript 'a'. The adjoint structure and the corresponding state fields are

defined later. _0 S from Eq. (21) into Eq. (25), use Eq. (22) andSubstitute for

collect terms:

f[ a (_< _)E) t = a-t a ca"0S.6¢ 60f.u _¢] J dVE *_lE* + + -- +

_f t a t Ea) _j dV f(_T.ua _ t a(of._ os. - + oT._ _) d_T : 0 (26)

Now, let us define the adjoint structure as follows:

Loads and Boundary Conditions:

Initial strain field

Initial stress field

Body force

Specified Traction

a0
Specified Displacements : u

ai

: E = G,S

S ai: = G
jE

: fa = G
,U

T ao: = h
on FT

= -g,T on Fu

(27)
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Constitutive Law (Linear):

a aiSa T (E - c ) -

Virtual Work Equation:

I sa'stE J dV - f fa.stuJ dV - I Ta'stu _ drT = 0

Substitute Eq. (28) into Eq. (29):

f(Ea.,,E.Sto E - Eai.0,E.st0E - sai.6tE - fa.6tu) J dV

Sai Sa; -- the adjoint stress field.

-f Ta.stu J dFT = 0

Strain Field (Linear in ua):

(28)

(29)

(30)

T T T

Ea = l[_T(rvua ] + (rVU a )T_ + _Tirvua ) (rVtuT)T_

T

+ _T(rVtT) irVU a )T_] (31)

Substitute the adjoint equilibrium equation (30) into Eq. (26):

_[Ea._ =t t = a -t a ai ~t a -- , 60e + e .6_,e.60e + oS.6e 60f.u + e "¢ e"

sai -t fa.6tu] J dV I t a t Ea) 6J dV+ .60E + - (0f.u - 0S.

+ f(Ta._tu_ _t0T.ua ) _ d_T _ foT.t ua 8J drT = 0 (32)

Note that the variations of the state fields in Eq. (30) are arbitrary. So,

they have been replaced as 8t0E = 6toC and 8tu = 8tu.

Substitute the adjoint loads from Eq. (27) into Eq. (20):

8_I = f(Eai.60S + sai.st0E + fa.6tu] J dV

+ f _ ua0.80T-t _ d_ u + f Ta0.6tuj dl"T (33)

Substitute for 6t S from Eq. (21) into Eq. (33):
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ai sai -t fa
.6t0¢ + _ ._¢ * .60e * ._tu] J dV

t j d_u f Ta0._t u _ d_T+ f-ua0._oT + (34)

-t
Substitute for 60E from Eq. (22) into Eq. (34):

_I : f[(eai'o,e+ Sai) .60e~t+ (eai "_,e+ sai)'_toe + eai "_

+ fa._t ] j dV + f_uaO.¢0T-tj dru + f TaO._T j dFT (35)

Substitute Eq. (32) into Eq. (35) and use Eq. (28) to obtain

_I f[-t a ai) _ sa.=t _ t _e a] J dV= _Of.U - (ea-e .6¢ 60e 0s-

+ fiof.U a _ t ea)_j dV f(tT.ua 6J -t a0S. + + 60T.u J)dF T

-t aO- 60T.u u (36)

Substitute Eq. (36) into Eq. (19):

_, = f[_tf.ua _(¢a_eai)._¢. sa. =t_60e 0S.t _ea + 6G]J dV

+ f(t aOf .u t Ea G)6J dV f(6gJ g6J t a0- + - 60T.u J)dF0S" + + u

+ f[(h + _T.ua)_J + (_h + 6_T.u a) J]dF T (37)

Equation (37) is a general design sensitivity formula for linear and nonlinear

structures (geometric and material nonlinearities), and shape, non-shape and

material selection problems. Formula also gives sensitivity interpretations of

the adjoint state fields. For example, it shows that the adjoint displacement

field is sensitivity of functional _ with respect to variations of the body

force and surface tractions. This interpretation has been also derived in Refs.

21 and 22 for linear systems using the Lagrangian approach. Formula (37) also

shows that the adjoint strain field gives variations of the functional _ with

respect to the constitutive law, the adjoint stress field is related to vari-

ations of $ with respect to explicit design variations of the strain field, and

variations of _ with respect to variations of J can be recovered using adjoint

and primary fields. These sensitivity interpretations will be observed in the

example problems solved in the next section. These interpretations can be

invaluable in practical applications and numerical implementations.
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6. EXAMPLEPROBLEMS

Several analytical linear and nonlinear examples are solved to show use of Eq.
(37) and interpretation of various terms. Although these examples are simple, they
can be valuable in gaining insights into numerical implementation for larger complex
problems. Also in using Eq. (37), we will use standard symbols o for stress and

for strain.

Example I. Bar Under Self Weight

This example is taken from Ref. 7 where sensitivity of tip displacement with

respect to length L is calculated. We will calculate sensitivities with respect to

all parameters of the problem to demonstrate use of formula (37) for material,

cross-sectional and length variations. The problem definition and various trans-

formations are shown in Fig. 3. Small displacements and linear stress-strain law

are assumed. The displacement field for the bar is given as u(x) : fx(2L-x)/2E

where f is the body force per unit volume. Thus

u(L) = fL2/E; _u(L) : [L2/2E]6f+ [fL/E)6L (38)

+ (O)h - (TT,R/R_.R][E

There are at least two interpretations of this problem and both can be treated using
Eq. (37).

First Interpretation. In this case, Eq. (37) can be interpreted as a line

integral with x as the only independent variable. The stress-strain law of Eq. (3)

must be interpreted as force-strain law, as the structure is only a line element.

Note that this must be done with the formulas given in Refs. 14, 16, 18 and 20 when

0 //"//
m

o:AA

x=_L
.Jl

J=AL

VOLUME
MAPPING

0 ///// I I

I I
I I

!Ix
J

L_

WX

x =_L

J=L

LINE
MAPPING

0 /////

]N

DESIGN VARIABLES" f, E, A, L

Figure 3. Bar Under Self Weight
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variations with respect to the cross-sectional area are needed. While using Eq.

(37), the tip displacement can be treated as a boundary term or the interior term.

We will use the latter approach.

as

I -I
-- fO u(5)J 6(5-I)Jd5;

^

The functional for sensitivity analysis is given

G = u(_)J-16(5-1); G = J-16(_-I)^ (39)
,u

where 6(_-I) is the Dirac delta function.

obtained as

u(5) = FL2_(2-5)/2E;

e(_) = fL2(1-5)/E;

e = e(_)J -I = fL(1-_)/E;

N = EAe = fAL(I-_);

The primary and adjoint fields can be

a(u 5) = L_/EA

a(e 5) = L/EA

a I
e = ea(_)J - = I/EA

Na -- EAE a = I (4O)

where N is the axial force and ¢ = EAe. Equation (37) reduces to

_ f_(6fu a - + 6G)Jd5_- - ease - Na_e N_c a

+ f10(fua- Ne a + G)6Jd5 (41)

Note that since we are using line integrals, the body force f = fA must be used.

Various quantities for use in Eq. (41) are

_¢ = (A6E + E6A)j-IfL2(I-_)/E;
--4

6f = A6f + f6A

Re = e(5)_J -I = -f(I-£)6L/E

(42)

_G -- -U(_)J-2_(5-1)6L;

_ a = Ea(5)_j-1 = -6L/EAL

Substituting all the quantities in Eq. (41) and carrying out the integrations, we

obtain the required sensitivity equation which is the same as Eq. (38). The

sensitivity interpretations of the adjoint fields can be directly observed.

Second Intepretation. In this case, Eq. (3) will be treated as a volume

integral. The functional for sensitivity analysis is given as

f o; G = (AL)-Iu(5)_(_-I) (43)

The displacement and strain fields are the same as given in Eq. (40). However, the

stress-strain law is the usual Hooke's Law:
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a
a -- Ee = fL(1-_); a = I/A (44)

Equation (37) reduces to

_, = flofK (_fu a - EaSe _ aa_E _ g_a + _GiJd_d_

+ f_; (fu a - oea + Gl_JdAd _ (45)

Various quantities for use in Eq. (45) are

_¢ : fL6E(I-_)/E; _J = L6A + A6L; _G : -(A -I + L-I)G (46)

Substituting various quantities from Eqs. (40), (42) and (46) into Eq. (45), we

again obtain the sensitivity expression given in Eq. (38). The sensitivity inter-

pretation of the adjoint fields can be easily observed.

Example 2. Cantilever Beam

This example is also discussed in Ref. 7 where sensitivity of tip deflection

with respect to the length is given. Figure 4 defines the problem and the transfor-

mations to the reference volume. The design variables are chosen as b = (E,s,h,L).

The tip deflection using small displacements beam theory is given as w(L) -- pL3/3EI

and its variation with respect to the design variables is given as

_w(L) = - PL3 _E pL3h3 _s pL3sh2 _h + PL--_2_L (47)

3E2I 36EI 2 12EI 2 EI

P

_z E,I,L

lh s

V=AL = Lhs

I
y=S'r/ 1 1 I
z:h_ -(_,_)

J:AL
m

V=l

Figure 4. Cantilever Beam
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The functional for the tip deflection and the function G are given as

^

= flof (48)

^

G = (AL)-Iw(_)6(_-I); G -- (AL)-I_(_-I) (49)
,w

The primary and adjoint structure solutions are given

pL 3 pL3_ 2

w,_ = E-I--(I-_); w(_) - 6EI (3-_) (50)

a L 3 L3_ 2

w,_ = E-_ (I-_); wa(_) : 6-_ (3-_) (51)

The sensitivity formula of Eq. (37) is reduced to

f10f (-ease - o_e a - ease + _G)ALdAd_

+ f_f (-aea + G)_(AL) dAd_ (52)

The following quantities are needed to complete integrations in Eq. (52):

_hL-2 a a hL-2; ^e = _w ; = _w _G = w_(_-1)_(AL) -I
7

_¢ a aa = Ee; = e6E; _ = Ee

- -2)_e = _W _(hL ; _e a : _wa _(hL -2)

Substituting these quantities in Eq. (52) and carrying out the integrations we get

the sensitivity expression given in Eq. (47). It is interesting to again note that

the adjoint displacement field given in Eq. (51) represents the sensitivity of the

primary displacement field (Eq. 52) with respect to the load parameters P; i.e.
a

u (_) --d_/dP.

Example 3. Materially Nonlinear Problem

Consider the bar of Fig. 3 subjected to a load P in the x direction at the free

end. The material for the bar obeys a nonlinear stress-strain law e = Eel/2(e>0);

so ¢ = Ee I/2 We will consider E, A and L as design variables and determine sensi-

tivit_y of the tip deflection. Transformation to the reference volume gives x --L_,

a = AA, J = AL, V -- AL, and V = I. Nonlinear analysis of the primary structure
yields:
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2P2L _E 2p2L _ p____2
u(_) = A2E2,P2L----_"6u(L) -- A2E3 A3E2 6A + A2E2 _L (53)

The functional for sensitivity analysis is given as

(54)

G = A-IL-Iu(_)_(_-I);
^

G : A-1L-16(_-1)
,u

(55)

The adjoint structure is linear with the stress-strain law as

a a
g = _ g

,E
I Eel/2 a AE 2 a

=_" e - 2P e (56)

The equilibrium equation for the adjoint structure gives

a = 2PL_ a = 2PL

u (_) A2E2, u,_ A2E2
(57)

The sensitivity formula of Eq. (37) reduces to

I a-
_ = fof_(-e 6_ - oa_e - o_ea + _G)JdAdF.

A

+ flof (-oea + G)6Jdad_ (58)

Various quantities for Eq. (58) are

= u 5L -I = P2L a ua L-I = 2PL.
, A2E 2; e = ,_ A2E 2'

^

6G = uS(_-I)_(AL)
-I

o Eel/2= ; ¢ = (I/2)Ec I/2,
,E

I/26E ' a a_=_ • o =_
,E

Re = u,_L -I = -L-2u,_6L; 6c a = -L-2u:_6L

Substituting these quantities into Eq. (58), we obtain the sensitivity formula of

Eq. (53). It is interesting to observe sensitivity meaning of the adjoint displace-

a
ment field in Eq. (57); i.e. u (5) = d_/dP.

Example 4. Geometrically Nonlinear Problem

Consider the two bar structure shown in Fig. 5. The material for the structure

is linear, so _ = Ee. Transformation to the reference volume is shown in the
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figure. The design variables for the problem are b-- (E,A,L).
problem is given as

The strain for the

t
E =

O

• I 2
ItL - °L)/°L = _ w2L- -- E (59)

The deflection at the center and member strains are calculated as

p1/3 L _ I 2 p2/3L2
w-- e-- EL 2

(EA) I/3, = _ w - (EA)2/3
(60)

The incremental equilibrium equation in terms of displacement at the center is

3EAw2L-36w -- 6P. The functional for sensitivity analysis is given as

(61)

^

G-- (AL)-Iw(_)6(_-I); G : (AL)-I_(_-I) (62)
_W

The equilibrium equation for the adjoint structure (using the incremental equili-

brium equation of the primary structure) is given as

3EAL-3w2wa : flofT(AL)-l_(_-l)ALc_d_ -- 1

a L 3 L

3EAw 2 3E I/3AI/3p2/3
(63)

Total axial displacement and displacement at any point are given as

ua(L) wasin8 wawL -I wawL -I= = ; ua(_) = (64)

L

L

W o

O

L'E'A

o=AA

PI2

J=AL

Figure 5. Two Member Structure
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The adjoint strains are given as

a awL-2 _aL-2 -a ac : w = , _ : w w (65)

The sensitivity formula of Eq. (37) reduces to

_ = 2f1OI_[-ea_ @ - oa_e - o_E:a + 6G)Jc_dE_

+ 2S101_[-oea + G)_JdAd_
(66)

Note that factor of 2 is used because volume integrals in Eq. (37) are for the

entire structure. Various quantities for Eq. (66) are

_¢ = _6E; _ = e_L 2 = _w2L-36L; _ a = _a_L-2 = _2wwaL-3_L

I_ 2.-2 a -2;o = Ee = _mw b ; o = Ee a = EwwaL 6J = L6A + A6L (67)

Substituting these quantities into Eq. (66), we get

p1/3 L p1/3 L I/3_L_ = _E _A + (P/EA) (68)

3E4/3A I/3 BE I/3A4/3

which can also be obtained directly from Eq. (60). Comparing w and w a in Eqs. (60)

and (63), we again observe the sensitivity interpretation of the adjoint displace-

ment field.

Next, consider the member stress given in Eq. (67) as a = (p2/3EI/3)/(2A2/3).

Its design sensitivity is given as

p2/3 p2/3E1/3
_ -- 6E _A+(O)_L (69)

6E2/3A2/3 3A5/3

The functional for design sensitivity analysis is given as

(70)

The adjoint load G,u in this case is zero but initial strain in the adjoint
ai _ _ a

structure and stress strain law are given as e = G = (AL) -I o = E(ea-Eai)_-
J

,O

The adjoint equilibrium equation in terms of central displacement gives w a =

a
(wA)-IL/3 and e --wwaL-2 = (AL)-I/3. Substituting appropriate quantities in Eq.

(37), it can be verified that Eq. (69) is obtained. It can be also directly

a
verified that w = d_b/dP ---do/dP.
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7. CONCLUDINGREMARKS

A general formula for design sensitivity analysis of linear and nonlinear

structures using variational approach has been developed. Equations of continuum

mechanics are used and the concepts of reference volume and adjoint structure are

exploited. Use of the formula is demonstrated on a few simple analytical problems.

The theory can be easily adapted for finite element modelling of structures. The

finite element models for the primary and adjoint structures can be independent of

each other. For modelling of design optimization problems, the concept of a refer-

ence volume is translated to the concept of a design element that is invariant with

respect to design changes. These observations can have considerable implications in

numerical implementations for design sensitivity analysis and optimization of

complex structures.

Considerable numerical work has been done for design sensitivity analysis and

optimization of linear structures. I Material derivative approach has been exploited

for shape optimization. In this regard recent work of Choi and Co-workers, 23 Yang

and Co-workers 24 and Hou and Co-workers 25 is significant. Yang and Co-workers 24

have shown equivalence of variational and finite element formulations of design

sensitivity analysis of shape problems for linear structures. This equivalence can

also be shown for nonlinear problems. Hou and Co-workers 25 have discussed some

difficulties with the material derivative approach of design sensitivity analysis of

linear shape problems. They have suggested numerical procedures to improve accuracy

of the approach.

Design sensitivity analysis and optimization with nonlinear response is just

beginning to be studied. Finite element approach for nonlinear stresses, strains,

displacements and the buckling load has been recently studied. 26-32. More research

needs to be done to fully develop this area.

_FE_N_S

IAdelman, H.M. and Haftka, R.T., "Sensitivity Analysis of Discrete Structural

Systems," AIAA Journal, Vol. 24, No. 5, May 1986, pp. 823-832.

2Adelman, H.M. and Haftka, R.T. (Eds.), "Sensitivity Analysis in Engineering,"

Proceedings of the NASA Symposium, NASA Langley Research Center, Hampton, VA,
NASA CP 2457, 1987.

3Gadala, M.S., Dokainish, M.A., and Oravas, AE.G., "Formulation Methods of

Geometric and Material Nonlinear Problems," International Journal for Numerical

Methods in Engineering, Vol. 20, 1984, pp. 887-914.

4Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice-Hall,

Englewood Cliffs, N.J., 1982.

130



5Ryu, Y.S. and Arora, J.S., "Review of Nonlinear FE Methods with Substructures,"
Journal of Engineering Mechanics Division, ASCE, Vol. 111, No. 11, November 1985,

pp. 1361-1379.

6Bathe, K.J. (Ed.), "Proceedings of the 5th ADINA Conference," Computers and

Structures, Vol. 21, Nos. I/2, 1985.

7Haber, R.B., "Application of The Eulerian Lagrangian Kinematic Description to

Structural Shape Optimization," Proceedings of NATO Advanced Study Institute on

Computer-Aided Optimal Design, C.A. Mota Soares (Ed.), Troia, Portugal, June 29 -

July 11, 1986, pp. 297-307.

8Arora, J.S. and Govil, A.K., "Design Sensitivity Analysis with Substructuring,"

Journal of Engineering Mechanics Division, ASCE, Vol. 103, No. EM4, 1977, pp. 537-

548.

9Arora, J.S. and Haug, E.J., "Methods of Design Sensitivity Analysis in

Structural Optimization," AIAA Journal, Vol. 17, Sept. 1979, pp. 970-974.

10Haug, E.J. and Arora, J.S., "Design Sensitivity Analysis of Elastic Mechanical

Systems," Computer Methods in Applied Mechanics and Engineering, Vol. 15, 1978, pp.

35-62.

11Haug, E.J. and Arora, J.S., Applied Optimal Design, Wiley-Interscience, John

Wiley and Sons, New York, N.Y. 1979.

12Hsieh, C.C. and Arora, J.S., "Structural Design Sensitivity Analysis with

General Boundary Conditions: Static Problem," International Journal for Numerical

Methods in Engineering, Vol. 20, 1984, pp. 1661-1670.

13Haug ' E.J., Choi, K.K., and Komkov, V., Design Sensitivity Analysis of

Structural Systems, Academic Press, Orlando, FL, 1986.

14Dems, K. and Mroz, Z., "Variational Approach by Means of Adjoint Systems to

Structural Optimization and Sensitivity Analysis - I. Variation of Material Para-

meters Within Fixed Domain," International Journal of Solids and Structures, Vol.

19, No. 8, 1983, pp. 677-692.

15Dems, K. and Mroz, Z., "Variational Approach by Means of Adjoint Systems to

Structural Optimization and Sensitivity Analysis - II: Structure Shape Variation,"

International Journal of Solids and Structures, Vol. 6, 1984, pp. 527-552.

16Dems, K. and Mroz, Z., "Variational Approach to First- and Second-Order

Sensitivity Analysis of Elastic Structures," International Journal for Numerical

Methods in Engineering, Vol. 21, 1985, pp. 637-661.

17Dems, K., "Sensitivity Analysis in Thermoelasticity," Proceedings of NATO

Advanced Study Institute on Computer-Aided Optimal Design, C.A. Mota Soares (Ed.),

Troia, Portugal, June 29 -July 11, 1986, pp. 287-297.

18Haftka ' R.T. and Mroz, Z., "First and Second Order Sensitivity Analysis of

Linear and Nonlinear Structures," AIAA Journal, Vol. 24, No. 7, July 1986, pp. 1187-

1192.

131



19Mroz, Z., Kamat, M.P., and Plant, R.H., "Sensitivity Analysis and Optimal
Design of Nonlinear Beamsand Plates," Journal of Structural Mechanics, Vol. 13,

Nos. 3/4, 1985, PP. 245-266.

20Mroz, Z., "Sensitivity Analysis and Optimal Design with Account for Varying

Shape and Support Conditions," Proceedings of NATO Advanced Study Institute on

Computer-Aided Optimal Design, C.A. Mota Soares (Ed.), Troia, Portugal, June 29 -

July 11, 1986, pp. 109-144.

21Belegundu, A.D., "Lagrangian Approach to Design Sensitivity Analysis," Journal

of Engineering Mechanics Division, ASCE, Vol. 111, No. 5, May 1985, pp. 680-695.

22Belegundu, A.D. and Arora, J.S., "A Sensitivity Interpretation of Adjoint

Variables in Optimal Design," Computer Methods in Applied Mechanics and Engineering,

Vol. 48, 1985, pp. 81-89.

23Choi, K.K., "Shape Design Sensitivity Analysis and Optimal Design of

Structural Systems," Proceedings of NATO Advanced Study Institute on Computer-Aided

Optimal Design, C.A. Mota Soares (Ed.), Troia, Portugal, June 29 - July 11, 1986,

pp. 54-108.

24yang, R.J. and Botkin, M.E., "Comparison between the Variational and Implicit

Differentiation Approaches to Shape Design Sensitivities," AIAA Journal, Vol. 24,

No. 6, June 1986, pp. 1027-1032.

25Hou, J.W., Chen, J.L., and Sheen, J.S., "Computational Method for Optimization

of Structural Shapes," AIAA Journal, Vol. 24, No. 6, June 1986, pp. 1005-1012.

26Ryu, Y.S., Haririan, M., Wu, C.C., and Arora, J.S., "Methods of Design

Sensitivity Analysis for Nonlinear Response," Computers and Structures, Vol. 21, No.

I/2, 1985, pp. 245-255.

27Haririan, M. and Arora, J.S., "Use of ADINA for Design Optimization of Non-

linear Structures," Computers and Structures, 1987.

28Wu, C.C. and Arora, J.S., "Simultaneous Analysis and Design Optimization of

Nonlinear Response," Engineering with Computers, 1987.

29Wu, C.C. and Arora, J.S., "Design Sensitivity Analysis of Nonlinear Response

Using Incremental Procedure," AIAA Journal, 1987.

30Wu, C.C. and Arora, J.S., "Design Sensitivity Analysis of Nonlinear Buckling

Load," Computational Mechanics, 1987.

31Arora, J. and Wu, C.C., "Design Sensitivity Analysis of Nonlinear Structures,"

Proceedings of NATO Advanced Study Institute on Computer-Aided Optimal Design, C.A.

Mota Soares (Ed.), Troia, Portugal, June 29 -July 11, 1986, pp. 228-246.

32Kamat, M.P., "Optimization of Shallow Arches Against Instability Using

Sensitivity Derivatives," Proceedings of the NASA Symposium on Sensitivity Analysis

in Engineering, H.M. Adelman and R.T. Haftka (Eds.), Langley Research Center,

Hampton, VA, NASA C P 2457, 1987.

132


