
On Generalizations of Network Design Problems with
Degree Bounds

Nikhil Bansal1, Rohit Khandekar1, Jochen Könemann2, Viswanath Nagarajan3, and
Britta Peis4

1 IBM T.J. Watson Research Center.{nikhil,rohitk}@us.ibm.com
2 University of Waterloo.jochen@uwaterloo.ca

3 Tepper School of Business, CMU.viswa@cmu.edu
4 Technische Universität Berlin.peis@math.tu-berlin.de

Abstract. The problem of designing efficient networks with degree-bound con-
straints has received a lot of attention recently. In this paper, we study several
generalizations of this fundamental problem. Our generalizations are of the fol-
lowing two types:

– Generalize constraints on vertex-degree toarbitrary subsets of edges.
– Generalize the underlying network design problem to other combinatorial

optimization problems likepolymatroid intersectionandlattice polyhedra.
We present several algorithmic results and lower bounds forthese problems. At
a high level, our algorithms are based on the iterative rounding/relaxation tech-
nique introduced in the context of degree bounded network design by Lau et
al. [LNSS07] and Singh-Lau [SL07]. However many new ideas are required to
apply this technique to the problems we consider. Our main results are:

– We consider theminimum crossing spanning tree problem[B+04] in the
case that the ‘degree constraints’ have alaminar structure(this general-
izes the well-known bounded degree MST [SL07]). We provide a(1, b +
O(log n)) bicriteria approximation for this problem, that improves over ear-
lier results [B+04,BKN08].

– We introduce theminimum crossing polymatroid intersectionproblem, and
give a(2, 2b + ∆ − 1) bicriteria approximation (where∆ is the maximum
number of degree-constraints that an element is part of). Inthe special case
of bounded-degree arborescence (here∆ = 1), this improves the previously
best known(2, 2b + 2) bound [LNSS07] to(2, 2b).

– We also introduce theminimum crossing lattice polyhedraproblem, and ob-
tain a(1, b+2∆− 1) bicriteria approximation under certain condition. This
result provides a unified framework and common generalization of various
problems studied previously, such as degree bounded matroids [KLS08].

1 Introduction

Recently there has been a substantial progress in algorithms for network design prob-
lems with additional degree-bound constraints. These problems arise naturally in var-
ious contexts, the degree bound may correspond to limitations in outgoing bandwidth
from a node, limitations in processing power, or even limitations of budget for the out-
going edges. The most widely studied problem in this line of research is the mini-
mum cost degree bounded spanning tree problem. Here given a weighted undirected



graph, and degree bounds for vertices, the goal is to find the minimum cost spanning
tree subject to these degree bounds. Even in the absence of weights, this problem is
NP-Hard, since finding a spanning tree with maximum degree two is equivalent to
finding a Hamiltonian Path. A variety of techniques has been used for this problem
[R+93,KR02,KR05,C+05,C+06,RS06,G06] which culminated in a recent breakthrough
by Singh and Lau [SL07] who gave the best possible algorithm,that achieves the opti-
mum cost, and an additive +1 violation in the degrees.

Subsequently, these results and techniques have been applied to different and more
general settings such as matroids, arborescences, directed network design problems
with intersecting and crossing super-modular connectivity requirements, and survivable
network design [LNSS07,LS08,BKN08,KLS08]. Another direction has been to look at
more general bounds than simply degree bounds, e.g., [B+04,BKN08,KLS08]. In this
paper, we study further extensions and generalizations of these problems. In addition to
several results, we also introduce and investigate thedegree bounded lattice polyhedron
problem. This problem forms a common generalization of several degree bounded op-
timization problems studied recently. We now formally describe various problems we
consider, our results and techniques and how they connect tothe previous work.

2 Our results, techniques and previous work

2.1 Minimum Crossing Spanning Tree

The algorithm of Singh and Lau [SL07] for the degree-boundedminimum spanning
tree problem is based on an iterative rounding approach of Jain [J01] based on a natural
linear programming relaxation. They show that in each iteration either some variable
is set to 0 or 1, or else the degree constraint on some vertex can be dropped. A natu-
ral question is whether one can generalize this approach to bounds on arbitrary subsets
of edges, instead of just degree bounds. This has been studied in the literature as the
Minimum Crossing Spanning Tree Problem (MCST). In this problem, we are given sub-
sets of edgesE1, . . . , Em ⊆ E and degree boundsb1, . . . , bm, and the goal is to find a
minimum cost spanning tree that contains at mostbi edges fromEi.

There are two previous results on the MCST problem. The first result, due to Bilo
et al. [B+04], gives a multiplicative guarantee on both costand degree violation: the
algorithm finds a spanning tree where the degree isO(log n)bi +O(log m) and the cost
violation is a multiplicativeO(log n). This algorithm is based on randomized rounding.
The second result [BKN08] gives an optimal cost guarantee and an additive guarantee
on degree: if each edge lies in at most∆ sets{Ei}mi=1, then there is an algorithm that
finds a spanning tree of optimum cost and degree at mostbi + ∆ − 1. This algorithm
uses the iterative rounding/relaxation approach of Singh and Lau [SL07]. Note that
these degree guarantees are incomparable: the first result is better for large∆, whereas
the second does better when∆ is small. For example, when∆ = Θ(n) there is either
an additiveO(n) or a multiplicativeO(log n) bound for the degree.

We consider a special case of MCST when the degree-bounds have a ‘laminar struc-
ture’, and improve over the above bounds. Our motivation is to understand how far one
can take the iterative rounding approach and provide smalladditivedegree constraint



violations with respect to the MCST problem. In thelaminar MCST problem, we are
given graphG = (V, E) with edge-costsc : E → R+, and degree bounds represented
by a laminar familyC on V along with a boundb(S) for eachS ∈ C. The goal is to
compute a minimum cost spanning tree inG that contains at mostb(S) edges from
δ(S) for eachS ∈ C; hereδ(S) := {(u, v) ∈ E | u ∈ S, v 6∈ S} is the set of edges
crossingS. We refer to edge-subsets of the formδ(S) for someS ⊆ V asvertex-cuts.
We obtain the following result for laminar MCST in Section 3,that improves over both
the previously known bounds.

Theorem 1 There is a polynomial time algorithm for laminar MCST that computes a
spanning tree of cost at most the optimum, and that contains at mostb(S) + O(log n)
edges fromδ(S) for all S ∈ C.

This algorithm is again based on iterative rounding, and it has two new main ideas.
First, we modify the iterative rounding procedure of Singh and Lau, to drop a constant
fraction of constraints in each iteration. This is crucial as it can be shown that dropping
one constraint at a time as in Singh and Lau can indeed lead to adegree violation of
Ω(∆). Second, the algorithm does not just drop degree constraints, but in some itera-
tions it also generates new degree constraints, by merging existing degree constraints.

Degree-bounded Matroids.A natural generalization of the MCST problem is themini-
mum crossing matroid basisproblem [KLS08]. Here we are given a matroid on ground-
setE with rank functionr : 2E → N, cost functionc : E → R and degree bounds
specified by subsets{Ei ⊆ E}mi=1 and respective bounds{bi}mi=1. The goal is to find a
min-cost basisB of the matroid satisfying|B ∩ Ei| ≤ bi for all i ∈ [m]. Once again
we denote by∆, the maximum number of sets{Ei}mi=1 that any element ofE lies in.
A result of [BKN08,KLS08] shows that iterated rounding can be used to finds a basis
of optimal cost that violates degree bounds by an at most and additive∆− 1 term. Our
second result extends the guarantee of [B+04] to the crossing matroid problem.

Theorem 2 There is a polynomial time algorithm for the minimum crossing matroid
basis problem, that computes a basis of cost at mostO(log k) times the optimum and
with at mostO(log k)bi + O(log m) elements fromEi for eachi ∈ [m]. Herem is the
number of degree constraints andk is the rank of the underlying matroid.

This algorithm is based on randomly rounding an optimal LP solution. Although the
algorithm in Theorem 2 is a natural extension of [B+04], the analysis is not completely
straightforward. The algorithm of Bilo et al. [B+04] performsO(log n) rounds of the
following: sample each edge independently according to thevalue produced by the LP
solution. The key argument here is a result of Alon [A95] showing that w.h.p. the chosen
edge-set (from the above procedure) contains a spanning tree: this proof relies on the
graph structure and the notion of connected components. However it is not clear how
to apply this argument to matroids, since there is no equivalent of a connected compo-
nent in general matroids. Instead, we obtain the desired result by using a theorem of
Polesskii [Pol90] (also proved in [Kar98]) that states: if amatroid of rankk contains
2L · ln k disjoint bases, then picking each element independently with probability 1

L ,
results in a set containing a basis w.h.p. Details of Theorem2 are given in Appendix B.



Hardness of approximation. Our next result shows that the crossing spanning tree
problem is strictly harder than the bounded degree minimum spanning tree problem.

Theorem 3 UnlessNP has quasi-polynomial time algorithms, the minimum crossing
matroid basis problem admits noO(logα m) additive approximation for some constant
α > 0. This holds even when there are no costs. Moreover, the minimum crossing
spanning tree problem does not admit a(1, b + O(logα m))-bicriteria approximation.

To show the hardness result in Theorem 3, we give a reduction from the Label Cover
Problem. The reduction proceeds in two steps. First, we showthe hardness for auniform
matroid instance, without costs. Then, we show how to use this to reduce to an MCST
problem with costs, such that any minimum spanning tree withoptimum cost violates
the degree bounds. The details are given in Section A.

We note that there is still a large gap between the positive and the negative results
for MCST. There is also an additiveΩ(

√
∆) gap for the standard LP-based approaches,

using discrepancy arguments5. While this integrality gap is substantially better than our
hardness result, given the lack of any reasonable hardness results on discrepancy type
problems, it is not clear how this could improve the hardnessresult for MCST.

2.2 Minimum Crossing Arborescence and Polymatroid Intersection

The degree bounded spanning tree problem has also been studied on directed graphs
[KKRR04,LNSS07,BKN08]. Here we are given a weighted directed graphG = (V, E)
with root r ∈ V and outdegree boundsbv on the verticesv ∈ V . Thedegree bounded
min-cost arborescence problemis to find a minimum cost arborescence rooted atr
subject to the degree bounds. The results for arborescencesare rather different from
those for spanning trees. Bansal et al. [BKN08] designed an algorithm that for any
0 ≤ ǫ ≤ 1/2, produces a(bv/(1− ǫ)+4, 1/ǫ) bi-criteria guarantee. In fact this guaran-
tee holds more generally for directed network design with ‘intersecting supermodular
requirements’. It turns out that this guarantee is best one can hope for via the natural
LP relaxation, even for arborescences, since there is a similar integrality gap for every
0 ≤ ǫ ≤ 1/2. In particular, any approximation better than multiplicative factor 2 in the
degree bounds causes a factor of at least 2 in the costs. If we do not care about costs, we
can setǫ = 0 and obtain only an additive degree violation; in fact, [BKN08] improved
this guarantee to plus 2.

Now, suppose we consider bounds on general edge sets. Given that additive guar-
antees exist for both crossing spanning trees and unweighted arborescences (with out-
degree bounds), a natural question is whether results analogous to spanning trees or
matroids also hold for unweighted arborescences. In particular, suppose we consider
the unweighted arborescence problem with bounds{bi}mi=1 on sets{Ei}mi=1, where the
set system has∆ := maxe∈E |{i ∈ [m] : e ∈ Ei}| = O(1), or even if∆ = 1 (i.e.,
setsEi are disjoint). Is there an additive degree violation guarantee in this case? Some-
what surprisingly, we show that for the natural LP relaxation, the answer is negative in
a rather strong sense:

5 This was pointed out to us by Mohit Singh.



Theorem 4 For anyǫ > 0, there exists an instance of the unweighted minimum cross-
ing arborescence problem such that even though the LP is feasible, the bound on some
set{Ei}mi=1 must be violated by a multiplicative factor at least2 − ǫ. Moreover, this
instance has∆ = 1, and just one non-degree constraint.

On the positive side we show a tight upper bound matching the lower bound above,
for the much more general polymatroid intersection problem.

Definition 1 (Minimum crossing polymatroid intersection problem). Let r1, r2 :
2E → Z be two supermodular functions,c : E → R and{Ei}i∈I be a collection of
subsets ofE with corresponding bounds{bi}i∈I . Then theminimum crossing polyma-
troid intersection problemis:

min cT x

x(S) ≥ max{r1(S), r2(S)} ∀S ⊆ E

x(Ei) ≤ bi ∀i ∈ [m]

xe ∈ {0, 1} ∀e ∈ E.

Recall that the arborescence problem is an intersection of apartition matroid and a
graphic matroid, and hence it is a special case of the matroidintersection problem. The
following theorem captures our main result for this problem.

Theorem 5 Any optimal basic solutionx∗ of the linear relaxation of the minimum
crossing polymatroid intersection problem can be rounded into an integral solution
x̂ such that̂x(S) ≥ max{r1(S), r2(S)} for all S ⊆ E and

cT x̂ ≤ 2cT x∗ and x̂(Ei) ≤ 2bi + ∆− 1 ∀i ∈ I.

We note that this result is the best one can hope given the lower bounds above.
First, the integrality gap instance mentioned previously implies that the multiplicative
factor in the degree cannot be improved beyond 2. Second, the[BKN08] lower bound
for arborescences implies that one cannot hope to obtain a ratio better than 2 in costs
(without violating factor strictly greater than 2 in degrees). For the special case of degree
bounded arborescence, Theorem 5 improves the previously best known bicriteria bound
of (2, 2b + 2) [LNSS07] to(2, 2b).

The algorithm for this theorem uses iterative rounding, andits proof is based on
a ‘fractional token’ counting argument similar to the one used in proving the∆ − 1
additive guarantee for the MCST problem [BKN08]. Proofs of Theorems 4 and 5 are
in Appendix C.

2.3 Minimum Crossing Lattice Polyhedron Problem

We generalize the minimum crossing polymatroid intersection problem even further
to minimum crossing lattice polyhedra. Lattice polyhedra form a common framework
for several discrete optimization problems such as polymatroids, intersection of two
polymatroids, shortest paths, max flow/min cut ins, t-planar graphs, supermodular sys-
tems, etc. (see Appendix D). Lattice polyhedra were first investigated by Hoffman and



Schwartz [HS78] and the natural LP relaxation was shown to betotally dual integral.
Even though greedy-type algorithms are known for all the examples mentioned above,
so far no combinatorial algorithm has been found for latticepolyhedra in general. Two-
phase greedy algorithms have been established only in caseswhere an underlying rank
function satisfies a monotonicity property (see [Fra99],[FP08]).

Before formally defining the crossing lattice polyhedra problem, we need to intro-
duce some terminology. Let(F ,≤) be a partially ordered set withF 6= ∅. We consider
a lattice (F ,≤), where there are two commutative binary operations,meet∧ and join
∨, that are defined onall pairsA, B ∈ F , such that:

A ∧B ≤ A, B ≤ A ∨B

Note that our definition is more general than the usual definition of a lattice, since the
join A∨B is not required to be the least common upper bound ofA andB. A function
r : F → Z+ is said to besupermodularon (F ,≤,∧,∨) iff:

r(A) + r(B) ≤ r(A ∧B) + r(A ∨B), for all A, B ∈ F

Given a supermodular functionr : F → Z+, a ground setE, a cost functionc : E →
R+, and a set-valued functionρ : F → 2E satisfying:

1. Consecutive property:If A ≤ B ≤ C thenρ(A) ∩ ρ(C) ⊆ ρ(B),
2. Submodularity: For allA, B ∈ F , ρ(A ∨B) ∪ ρ(A ∧B) ⊆ ρ(A) ∪ ρ(B),

the lattice polyhedron problemis defined as the following integer program:

min{cT · x |
∑

e∈ρ(S)

xe ≥ r(S), ∀S ∈ F ; x ∈ {0, 1}E}

Definition 2 (Minimum crossing lattice polyhedron).Given a lattice polyhedron spec-
ified by (F ,≤,∧,∨, E, ρ, r, c), and a family{Ei}mi=1 of subsets ofE with bounds
{bi}mi=1, theminimum crossing lattice polyhedronproblem is:

min cT · x
x(ρ(S)) ≥ r(S), ∀S ∈ F Rank constraints

x(Ei) ≤ bi, ∀i ∈ I Degree constraints

x ∈ {0, 1}E

We prove the following result for this problem.

Theorem 6 Consider any instance of minimum crossing lattice polyhedra (Definition 2)
that satisfies the following assumption:

(∗) S < T =⇒ |ρ(S)| < |ρ(T )|, for all S, T ∈ F

Then there is an algorithm that computes a solution of cost atmost the optimal, where
all rank constraints are satisfied, and each degree bound is violated by at most an
additive2∆− 1. Here∆ := maxe∈E |{i ∈ [m] : e ∈ Ei}|.



This theorem also holds in the presence of both lower and upper degree-bounds.
We note that assumption(∗) is satisfied for matroids, so Theorem 6 matches the previ-
ously best-known bound [KLS08] for degree bounded matroids(with both upper/lower
bounds). We also note that this theorem is only applicable when the rank constraints are
separable in polynomial time; this corresponds to the problem of minimizing a submod-
ular function on ground-setE over the subsets{ρ(S) | S ∈ F} ⊆ 2E . This is indeed
possible in all aforementioned examples of lattice polyhedra.

Observe that property(∗) is valid in case of inclusion-wise ordering, i.e., if

S ≤ T ⇐⇒ ρ(S) ⊆ ρ(T ) ∀S, T ∈ F .

In this special case, we can improve the result of Theorem 6.

Theorem 7 If the underlying lattice of the minimum crossing lattice polyhedron prob-
lem is ordered by inclusion, then there is an algorithm that computes a solution of cost
at most the optimal, where all rank constraints are satisfied, and each degree bound is
violated by at most an additive∆− 1.

Theorems 6 and 7 are similar to the corresponding proofs for MCST [BKN08] and
degree-bounded matroid [KLS08], however the arguments need to be carefully adapted
in the more general setting of lattice polyhedra. Proofs appear in Appendix D.

3 Crossing Spanning Tree with Laminar degree bounds

We consider thecrossing spanning tree problemwith bounds on vertex-cuts that form
a laminar family. In this problem, we are given an undirectedgraphG = (V, Eo) onn
vertices, non-negative edge-costsce for e ∈ Eo, and a familyD of subsets ofV with
“degree-bounds”b(S) for eachS ∈ D. We assume thatD is alaminar familyof vertex-
sets: i.e.S ⊆ T or T ⊆ S or S ∩ T = ∅ holds for anyS, T ∈ D. The problem involves
computing a minimum-cost spanning treeT of G that contains at mostb(S) edges from
δ(S) for eachS ∈ D. This problem reduces to the usual degree-bounded MST when
D = {{v} | v ∈ V }. In this section we prove Theorem 1.

The algorithm uses iterative rounding based on an LP relaxation. The algorithm
modifies the laminar family of degree bounds during its execution. A generic iteration
starts with a subsetF of edges already picked in the solution, a subsetE of undecided
edges, i.e., the edges not yet picked in or dropped from the solution, a laminar family
L on V , and residual degree boundsb(S) for eachS ∈ L. The laminar familyL has
a natural forest-like structure withnodescorresponding to each element ofL. A node
S ∈ L is called theparentof nodeC ∈ L if S is the inclusion-wise minimal set
in L \ {C} that containsC; andC is called achild of S. NodeD ∈ L is called a
grandchildof nodeS ∈ L if S is the parent ofD’s parent. NodesS, T ∈ L aresiblings
if they have the same parent node. A node that has no parent is calledroot. Thelevelof
any nodeS ∈ L is the length of the path in this forest fromS to the root of its tree. We
also maintain alinear orderingof the children of eachL-node. A subsetB ⊆ L is called
consecutiveif all nodes inB are siblings (with parentS) and they appear consecutively



in the ordering ofS’s children. In any iteration(F, E,L, b), the algorithm solves the
following LP relaxation of the residual problem.

min
∑

e∈E

cexe (1)

s.t. x(E(V )) = |V | − |F | − 1

x(E(U)) ≤ |U | − |F (U)| − 1 ∀U ⊂ V

x(δE(S)) ≤ b(S) ∀S ∈ L
xe ≥ 0 ∀e ∈ E

For any vertex-subsetU ⊆ V and edge-setH , we letH(U) := {(u, v) ∈ H |
u, v ∈ U} denote the edges induced onU ; andδH(S) := {(u, v) ∈ H | u ∈ S, v 6∈
S} the set of edges crossingS. The first two sets of constraints are spanning tree
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constraints while the third set corresponds to the degree
bounds. Letx denote an optimalextreme point solutionto
this LP. By reducing degree boundsb(S), if needed, we as-
sume thatx satisfies all degree bounds at equality(the de-
gree bounds may be fractional-valued). Letα := 24.

Definition 3. An edgee ∈ E is said to belocal for S ∈ L
if e has at least one end-point inS but is neither inE(C)
nor in δ(C)∩ δ(S) for any grandchildC of S. Let local(S)
denote the set of local edges forS. A nodeS ∈ L is said to
begoodif |local(S)| ≤ α.

The figure on the right shows a setS, its childrenB1 and
B2, and grand-childrenC1, . . . , C4; edges inlocal(S) are
drawn solid, non-local ones are shown dashed.

The algorithm is initialized withF ← ∅, E ← Eo,
L ← D, the original degree bounds onD, and an arbi-
trary linear ordering on the children of each node inD. In
a generic iteration(F, E,L, b), the algorithm performs one
of the following steps:

1. If xe = 1 for some edgee ∈ E thenF ← F ∪ {e}, E ← E \ {e}, and set
b(S)← b(S)− 1 for all S ∈ L with e ∈ δ(S).

2. If xe = 0 for some edgee ∈ E thenE ← E \ {e}.
3. DropN: Suppose there at least|L|/4 good non-leaf nodes inL. Then either odd-

levels or even-levels contain a setM ⊆ L of |L|/8 good non-leaf nodes. Drop
the degree bounds of allchildrenofM and modifyL accordingly. The ordering of
siblings also extends naturally.

4. DropL: Suppose there are more than|L|/4 good leaf nodes inL, denoted byN .
Then partitionN into parts corresponding to siblings inL. For any part{N1, · · · ,
Nk} ⊆ N consisting of ordered (not necessarily contiguous) children of some node
S:
(a) DefineMi = N2i−1 ∪N2i for all 1 ≤ i ≤ ⌊k/2⌋ (if k is oddNk is not used).



(b) Modify L by removing leaves{N1, · · · , Nk} and adding new leaf-nodes{M1,
· · · , M⌊k/2⌋} as children ofS. The children ofS in the new laminar family are
ordered as follows: each nodeMi takes the position of eitherN2i−1 or N2i,
and other children ofS are unaffected.

(c) Set the degree bound of eachMi to b(Mi) = b(N2i−1) + b(N2i).

S

1 2 3 4

S

N5

S

1 2 3 4

T

S

N3
N2N1 N4

M2
M1

T

DropN step

Good non-leaf S

DropL step

Good leaves {Ni}
5

i=1

Fig. 1. Examples of the degree constraint modifications DropN and DropL.

Assuming that one of the above steps applies at each iteration, the algorithm termi-
nates whenE = ∅ and outputs the final setF as a solution. It is clear that the algorithm
outputs a spanning tree ofG. An inductive argument (see e.g. [LNSS07]) can be used
to show that the LP (1) is feasible at each each iteration andc(F ) + LPcur ≤ LPo

whereLPo is the original LP value,LPcur is the current LP value, andF is the chosen
edge-set at the current iteration. Thus the cost of the final solution is at most the initial
LP optimumLPo. Next we show that one of the four iterative steps always applies.

Lemma 1 In each iteration, one of the four steps above applies.

Proof: We crucially use the fact thatx is an extreme point solution of (1). This implies
thatx is uniquely defined by satisfying a linearly independent andlaminar subsetS of
the spanning tree constraints at equality together with a sub-familyL′ ⊆ L of degree-
constraints, such that|E| = |S|+ |L′|. If the first two steps do not apply, then0 < xe <
1 for all e ∈ E. A counting argument (see, e.g., [SL07]) shows that there are at least2
edges induced on eachS ∈ L′ that are not induced on any of its children; so2|S| ≤ |E|.
From the definition of local edges, we get that any edgee = (u, v) is local to at most
the following six sets: the smallest setS1 ∈ L containingu, the smallest setS2 ∈ L
containingv, the parentsP1 andP2 of S1 andS2 resp., the least-common-ancestorL
of P1 andP2, and the parent ofL. Thus

∑

S∈L |local(S)| ≤ 6|E|. Combining these
facts, we conclude that

∑

S∈L |local(S)| ≤ 12|L|. Thus at least|L|/2 setsS ∈ Lmust
have|local(S)| ≤ α = 24, i.e., must be good. Now either at least|L|/4 of them must
be non-leaves or at least|L|/4 of them must be leaves. In the first case, step 3 holds and
in the second case, step 4 holds.



It remains to bound the violation in the degree constraints,which turns out to
rather challenging. We note that this is unlike usual applications of iterative round-
ing/relaxation, where the harder part is in showing that oneof the iterative steps applies.

It is clear that the algorithm reduces the size ofL by at least|L|/8 in each DropN
or DropL iteration. Since the initial number of degree constraints is at most2n− 1,

Lemma 2 The number of drop iterations (DropN and DropL) isT := O(log n).

3.1 Performance guarantee for degree constraints

We begin with some notation. The iterations of the algorithmare broken into periods
between successive drop iterations: there are exactlyT drop-iterations (Lemma 2). In
what follows, thet-th drop iteration is calledround t. The time t refers to the instant
just after roundt; time0 refers to the start of the algorithm. At any timet, define:

– Lt denotes the laminar family of degree constraints.
– Et denotes the undecided edge set, i.e., support of the currentLP optimal solution.
– For any setB of consecutive siblingsin Lt, Bnd(B, t) =

∑

N∈B b(N) equals the
sum of the residual degree bounds on nodes ofB.

– For any setB of consecutive siblingsin Lt, Inc(B, t) equals the number of edges
from δEt

(∪N∈BN) included in the final solution.

Recall thatb denotes theresidualdegree bounds at any point in the algorithm. The
following lemma is the main ingredient in bounding the degree violation.

Lemma 3 For any setB of consecutive siblings inLt (at any timet), we haveInc(B, t) ≤
Bnd(B, t) + 4α · (T − t).

Observe that this implies the desired bound on each originaldegree constraintS:
usingt = 0 andB = {S}, the violation is bounded by an additive4α · T term.
Proof: The proof of this lemma is by induction onT − t. The base caset = T is trivial
since the only iterations after this correspond to including 1-edges: hence there is no
violation inanydegree bound, i.e.Inc({N}, T ) ≤ b(N) for all N ∈ LT . Hence for any
B ⊆ L, Inc(B, T ) ≤∑

N∈B Inc({N}, T ) ≤∑

N∈B b(N) = Bnd(B, T ).
Now supposet < T , and assume the lemma fort + 1. Fix a consecutiveB ⊆ Lt.

We consider different cases depending on what kind of drop occurs in roundt + 1.

DropN round. Here either all nodes inB get dropped or none gets dropped.
Case 1:None ofB is dropped.The inductive hypothesis impliesInc(B, t + 1) ≤

Bnd(B, t+1)+4α·(T−t−1). Since the only iterations between roundt and roundt+1
involve edge-fixing, we haveInc(B, t) ≤ Bnd(B, t)−Bnd(B, t + 1) + Inc(B, t + 1) ≤
Bnd(B, t) + 4α · (T − t− 1).

Case 2:All of B is dropped.Let C denote the set of all children (inLt) of nodes in
B. Note thatC consists of consecutive siblings inLt+1, and inductivelyInc(C, t + 1) ≤
Bnd(C, t + 1) + 4α · (T − t − 1). Let S ∈ Lt denote the parent of theB-nodes;
so C are grand-children ofS in Lt. Let x denote the optimal LP solutionjust before
roundt + 1 (when the degree bounds are still given byLt), andH = Et+1 the support



edges ofx. At that point, we haveb(N) = x(δ(N)) for all N ∈ B ∪ C. Also let
Bnd′(B, t + 1) :=

∑

N∈B b(N) be the sum of bounds onB-nodes just before round
t + 1. SinceS is a good node in roundt + 1, |Bnd

′(B, t + 1) − Bnd(C, t + 1)| =
|∑N∈B b(N) −∑

M∈C b(M)| = |∑N∈B x(δ(N)) −∑

M∈C x(δ(M))| ≤ 2α. The
last inequality follows sinceS is good; the factor of2 appears since some edges, e.g.,
the edges between two children or two grandchildren ofS, may get counted twice. Note
also that the symmetric difference ofδH(∪N∈BN) andδH(∪M∈CM) is contained in
local(S). ThusδH(∪N∈BN) andδH(∪M∈CM) differ in at mostα edges.

Again since all iterations between timet andt + 1 are edge-fixing:

Inc(B, t) ≤ Bnd(B, t)− Bnd′(B, t + 1) + |δH(∪N∈BN) \ δH(∪M∈CM)|
+Inc(C, t + 1)

≤ Bnd(B, t)− Bnd′(B, t + 1) + α + Inc(C, t + 1)

≤ Bnd(B, t)− Bnd′(B, t + 1) + α + Bnd(C, t + 1) + 4α · (T − t− 1)

≤ Bnd(B, t)− Bnd′(B, t + 1) + α + Bnd′(B, t + 1) + 2α + 4α · (T − t− 1)

≤ Bnd(B, t) + 4α · (T − t)

The first inequality follows from simple counting; the second follows sinceδH(∪N∈BN)
andδH(∪M∈CM) differ in at mostα edges; the third is the induction hypothesis, and
the fourth isBnd(C, t + 1) ≤ Bnd′(B, t + 1) + 2α (as shown above).

DropL round. In this case, letS be the parent ofB-nodes inLt, andN = {N1, · · · , Np}
be all the ordered children ofS, of whichB is a subsequence (since it is consecutive).
Suppose indices1 ≤ π(1) < π(2) < · · · < π(k) ≤ p correspond to good leaf-nodes
in N . Then for each1 ≤ i ≤ ⌊k/2⌋, nodesNπ(2i−1) andNπ(2i) are merged in this
round. Let{π(i) | e ≤ i ≤ f} (possibly empty) denote the indices of good leaf-nodes
in B. Then it is clear that the only nodes ofB that may be merged with nodes outside
B areNπ(e) andNπ(f); all otherB-nodes are either not merged or merged with another
B-node. LetC be the inclusion-wise minimal set ofchildren ofS in Lt+1 s.t.

– C is consecutive inLt+1,
– C contains all nodes ofB \ {Nπ(i)}ki=1, and
– C contains all new leaf nodes resulting from mergingtwo good leaf nodesof B.

Note that∪M∈CM consists of some subset ofB and at most two good leaf-nodes in
N \B. These two extra nodes (if any) are those merged with the goodleaf-nodesNπ(e)

andNπ(f) of B. Again letBnd′(B, t + 1) :=
∑

N∈B b(N) denote the sum of bounds
onB just before drop roundt + 1, when degree constraints areLt. Let H = Et+1 be
the undecided edges in roundt + 1. By the definition of bounds on merged leaves, we
haveBnd(C, t + 1) ≤ Bnd′(B, t + 1) + 2α. The term2α is present due to the two extra
good leaf-nodes described above.

Claim 1 We have|δH(∪N∈BN) \ δH(∪M∈CM)| ≤ 2α.

Proof: We say thatN ∈ N is represented inC if either N ∈ C or N is contained
in some node ofC. Let D be set of nodes ofB that arenot represented inC and the



nodes ofN \ B that are represented inC. Observe that by definition ofC, the setD ⊆
{Nπ(e−1), Nπ(e), Nπ(f), Nπ(f+1)}; in fact it can be easily seen that|D| ≤ 2. Moreover
D consists of only good leaf nodes. Thus, we have| ∪L∈D δH(L)| ≤ 2α. Now note that
the edges inδH(∪N∈BN) \ δH(∪M∈CM) must be in∪L∈DδH(L). This completes the
proof.

As in the previous case, we have

Inc(B, t) ≤ Bnd(B, t)− Bnd′(B, t + 1) + |δH(∪N∈BN) \ δH(∪M∈CM)|
+Inc(C, t + 1)

≤ Bnd(B, t)− Bnd′(B, t + 1) + 2α + Inc(C, t + 1)

≤ Bnd(B, t)− Bnd′(B, t + 1) + 2α + Bnd(C, t + 1) + 4α · (T − t− 1)

≤ Bnd(B, t)− Bnd′(B, t + 1) + 2α + Bnd′(B, t + 1) + 2α + 4α · (T − t− 1)

= Bnd(B, t) + 4α · (T − t)

The first inequality follows from simple counting; the second uses Claim 1, the third
is the induction hypothesis (sinceC is consecutive), and the fourth isBnd(C, t + 1) ≤
Bnd′(B, t + 1) + 2α (from above).
This completes the proof of the inductive step and hence Lemma 3.
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A Hardness Result for Minimum Crossing Spanning Tree

In this section we will show that unlessNP has quasi-polynomial time algorithms,
any solution with optimum cost for minimum crossing spanning tree, must violate the
degree by at least an additive term ofO(logc m) for some universal constantc. Before
we prove this result, we show hardness for the more general minimum crossing matroid
basis problem: given a matroidM on a ground setV of elements, a cost function
c : V → R+, and degree bounds specified by pairs{(Ei, bi)}mi=1 (where eachEi ⊆ V
andbi ∈ N), find a minimum cost basisI inM such that|I ∩ Ei| ≤ bi for all i ∈ [m].
Later we show how to adapt this hardness result to special case of the spanning tree
matroid.



Theorem 8 UnlessNP has quasi-polynomial time algorithms, the minimum crossing
matroid basis problem admits noO(logc m) additive approximation for some fixed con-
stantc > 0. This holds even if we do not care about the costs.

Proof: We reduce from the label cover problem [A+93]. The input is a graphG =
(U, E) where the vertex setU is partitioned into piecesU1, · · · , Un each having sizeq,
and all edges inE are between distinct pieces. We say that there is asuperedgebetween
Ui andUj if there is an edge connecting some vertex inUi to some vertex inUj . Let t
denote the total number of superedges.

t = |{(i, j) ∈
(

[n]

2

)

| there is an edge inE betweenUi andUj}|

The goal is to pick one vertex from each part{Ui}ni=1 so as to maximize the number of
induced edges. This is called the value of the label cover instance. Note that the value
can be at mostt.

It is well known that there exists a universal constantγ > 1 such that for every
k ∈ N, there is a reduction from any instance of SAT (having sizeN ) to a label cover
instance〈G = (U, E), q, t〉 such that:

– If the SAT instance is satisfiable, the label cover instance has optimal valuet.
– If the SAT instance is not satisfiable, the label cover instance has optimal value

< t/γk.
– |G| = NO(k), q = 2k, and the reduction runs in timeNO(k).

We construct a uniform matroidM with rank t on ground setE (recall that any
subset oft edges is a basis in a uniform matroid). There is a set of degreebounds
corresponding to eachi ∈ [n]: for every collectionC of edges incident to vertices in
Ui such that no two edges inC are incident to the same vertex inUi, there is a degree
bound requiringat most oneelement to be chosen fromC. Note that the number of
degree boundsm ≤ n · (nq)q ≤ n2q.

Observe that if the original SAT instance is satisfiable, then the matroidM contains
a basis obeying all the degree bounds: namely thet edges covered in the optimal solu-
tion to the label cover instance. This is because if we consider anyUi, then all the edges
having a vertex inUi as their endpoint, have the same endpoint. Thus, by the way the
collectionC is defined, at most one such edge can lie in it.

On the other hand, we will show that if the SAT instance is unsatisfiable, then every
basis inM picks at leastρ = γk/2 edges from some degree-constrained set of edges.
Suppose (for a contradiction) that there is a basis (i.e. setof t edgesB ⊆ E) such that
|B ∩ C| < ρ for each degree constraintC. This means that each part{Ui}ni=1 contains
fewer thanρ vertices that are incident to edgesB. For each parti ∈ [n], let Wi ⊆ Ui

denote the vertices incident to edges ofB; note that|Wi| < ρ. Consider the label cover
solution obtained as follows. For eachi ∈ [n], choose one vertex fromWi uniformly
at random. Clearly, the expected number of edges in the resulting induced subgraph is
at leastt/ρ2 = t/γk, which contradicts that the value of label cover instance isstrictly
less thant/γk.

The steps described in the above reduction can be done in timepolynomial inm
and |G|. Also, instead of randomly choosing vertices from the setsWi, we can use



conditional expectations to derive a deterministic algorithm that recovers at leastt/ρ2

edges. Settingk = Θ(log log N) (recall thatN is the size of the original SAT instance),
we obtain an instance of bounded-degreematroid basis of sizemax{m, |G|} = N loga N

andρ = γk/2 = logb N , wherea, b > 0 are constants. Note thatlog m = loga+1 N ,
which impliesρ = logc m for c = b

a+1 > 0 a constant. Thus it follows that for this
constantc > 0 the bounded-degree matroid basis problem has noO(logc m) additive
approximation, unlessNP has quasi-polynomial time algorithms.

We now consider the special case of minimum-cost crossing spanning tree: given an
edge-weighted graph with degree-bounds onm edge-sets, find a minimum cost span-
ning tree satisfying all degree bounds. Using Theorem 3, we prove the following.

Corollary 1 UnlessNP has quasi-polynomial time algorithms, there is no(b+logc m, 1)
approximation for the minimum-cost crossing spanning treeproblem, for some fixed
constantc > 0.

Proof: Recall that Theorem 3 actually shows the hardness of approximating the bounded-
degreeuniformmatroid problem. We show how the bases of a uniform matroid can be
represented in a suitable instance of the min-cost crossingspanning tree problem. Let
the uniform matroid from Theorem 3 consist ofe elements and have rankt ≤ e. We
construct a graph as in Figure 2, with verticesv1, · · · , ve corresponding to elements in
the uniform matroid. Each vertexvi is connected to the rootr by two vertex-disjoint
paths:〈vi, ui, r〉 and〈vi, wi, r〉. The edges{(r, ui) | i ∈ [e]} ∪ {(vi, ui) | i ∈ [e]} have
cost zero, and edges{(r, wi) | i ∈ [e]}∪{(vi, wi) | i ∈ [e]} have cost 1. Corresponding
to each degree bound (in the uniform matroid) ofb(C) on a subsetC ⊆ [e], there is a
constraint to pick at most|C|+ b(C) edges fromδ({ui | i ∈ C}).

ui

vi

u1

r

w1

vn

v1

wi

un

wn

The dashed edges have cost 0, solid edges have cost 1.

Fig. 2. The crossing spanning tree instance used in the reduction.

Observe that for eachi ∈ [e], any spanning tree must choose at least three edges
among{(r, ui), (ui, vi), (r, wi), (wi, vi)}, in fact any three edges suffice. Thus for any
spanning tree of cost2n − t, there must be exactlyt indicesi for which both edges



(r, ui) and(ui, vi) lie in the spanning tree. Thus we can associate a basis in the uniform
matroid with every spanning tree of cost2n− t.

In Theorem 3, for the bounded-degree uniform matroid problem, it is hard to dis-
tinguish the following two cases: (yes-case) there is a basis b∗ satisfying all degree
bounds, and (NO-case) every basis violates some degree bound by an additiveρ =
Ω(logc m) term. In the yes-case, wheneveri lies in the basisb∗, we choose the edges
{(r, ui), (ui, vi), r(wi)}. This solution has cost2n − t, and satisfies all the degree
bounds. On the other hand, in the no-case any spanning tree with cost2n− t, must vio-
late some degree bound by at least an additiveρ. This implies that there is no(b + ρ, 1)
approximation for minimum-cost crossing spanning tree: given some instanceI (which
is either a YES-instance or NO-instance) of the bounded degree matroid problem, we
reduceI to a crossing spanning tree instance as above and apply the(b + ρ, 1) algo-
rithm. If we obtain a tree of cost at most2n− t thenI is a (YES-instance), otherwise it
is a (NO-instance).

B An algorithm for minimum crossing matroid basis

In this section, we consider the minimum crossing matroid problem defined as fol-
lows. Given a matroidM havingn elements, rank functionr : 2[n] → N and cost
c : [n] → R, andm arbitrary “degree” constraints{Ei, bi}mi=1, find a minimum cost
basis subject to the degree constraints. For the case of crossing spanning tree, Bilo et al.
gave an(O(log n)b+O(log m), O(log n)) approximation algorithm based on random-
ized rounding of the natural LP relaxation. We note that thisresult can be extended to
the bounded-degree matroid problem. In particular, we showthat

Theorem 9 There is an(O(log k)b + O(log m), O(log k)) bicriteria approximation
algorithm for the bounded-degree matroid basis problem with m degree constraints on
a matroid of rankk.

The algorithm is very simple: We consider the following LP relaxation.

min
∑

e∈[n]

ce · xe

x(S) ≤ r(S) ∀S ⊆ [n]

x([n]) = r([n])

x(Ei) ≤ bi ∀i ∈ [m]

If x denotes an optimal solution to the above LP-relaxation, then the integer solution
R consists of each elemente ∈ [n] chosen independently with probabilitymin{ρ ·
xe, 1}, whereρ = 2⌈ln k⌉. We will show that w.h.p.R contains a basis and that all the
degree violations are small. Using the Chernoff bound for each i ∈ [m], Pr[|R∩Ei| >
2ρbi +2 logm] ≤ 1

m2 (since the expected value of|R∩Ei| is at mostρ · bi). Thus with
probability at least1− 1

m , for every degree boundi ∈ [m], we have|R ∩Ei| ≤ 2ρbi +
2 logm. Before showing thatR contains a basis w.h.p., we state a relevant theorem of
Polesskii [Pol90], which was also proved in Karger [Kar98].



Theorem 10 (Theorem 4.2, Karger [Kar98]) Suppose a matroidN of rank k con-
tains2L · ln k disjoint bases. Then if each element ofN is chosen independently with
probability 1

L , the resulting set contains a basis with probability at least 1−O( 1
k ).

Claim 2 The setR contains a basis ofM with probability at least1−O( 1
k ).

Proof: This is a direct application of Theorem 10. LetL be some large integer so that
L · xe is integral for alle ∈ [n] (recall thatx is the optimal LP solution). Construct
matroidN fromM by keeping2L⌈lnk⌉ · xe copiesof each elemente ∈ [n]; clearly
the rank ofN equalsk (rank ofM). Sincex is a fractional basis inM, matroidN
containsP = 2L · ⌈ln k⌉ disjoint bases. This follows from the matroid base packing
theorem, Corollary 42.1d, [Sch03], which states that a matroid on element setV with
rank functionr hasℓ disjoint bases if and only ifℓ(r(V )− r(S)) ≤ |V \ S|.

Consider picking each element inN independently with probability1L , and letT ′

be the resulting set of elements. LetT ⊆ [n] be the set of distinct element ofM in T ′;
clearlyT ′ contains a basis ofN iff T contains a basis ofM. Theorem 10 implies thatT
contains a basis with probability at least1 −O( 1

k ). We now relate the random setT to
the random setR. It is clear that each elemente ∈ [n] is chosen independently inT (as is
the case inR). The probabilityqe of notpicking elemente ∈ [n] in T equals(1− 1

L)Pxe

which is at most1− P
L xe. Note thatqe ≥ max(0, 1− P

L xe). Now,pe = min(1, P
L xe)

is the probability thate is picked in setR, and hencepe = max(0, 1 − P
L xe) which is

at mostqe. Thus the random setR stochastically dominatesT . Since basis containment
is a monotone property, the probability thatR contains a basis is larger than that forT ,
implying the claim.

Combining the high probability statements for degree-bound violation and Claim 2,
we obtain Theorem 2.

C Minimum Crossing Arborescence and Polymatroid Intersection

Recall that there is an additive +2 approximation for the degree bounded arborescence
problem without costs. In this section, we consider this problem when bounds on arbi-
trary edge sets are allowed. Surprisingly, we show that evenif we add one extra ”non-
degree” bound, the degree bounded arborescence problem without cost has a (multi-
plicative) integrality gap of 2. In particular, we prove Theorem 4:
Proof: [Theorem 4] We first define the graph. This graph is shown in Figure 3, and
is similar to the one in [BKN08] (but has different parameters). Letk be an arbitrarily
large integer, consider ak-ary arborescence rooted at rootr, of depthd > 2 ln(2/ǫ)/ǫ.
We call the edges of this arborescence solid edges. Considerthe natural drawing of this
tree, and label these leaves1, . . . , kd, from right to left. Next we define dashed edges as
follows. There is one edge going from rootr to leaf1, and one edge from each leafi to
i + 1 for i = 1, . . . , kd − 1. Finally, the dotted edges are defined as follows. For each
internal nodev (other than the root), there is an incoming dotted edge from the leftmost
leaf root in the subtree rooted atv. This completes the description of the graph. The
degree bounds are as follows. For each non-leaf vertex, there is an out-degree bound of



r

23k
t 1

Fig. 3. The integrality gap instance. The setE1 consists of all dashed edges.

k/2. In addition, we define theE1 to be the set of all dashed edges and assign it a bound
of b1 = kd/2. Note that|E1| = kd. It is easily verified that∆ = 1.

Consider the LP solution which assignsxe = 0.5 to every edge. It is easily verified
that this is a valid arborescence solution (each vertex can be sent a unit of flow from
the root by sending 0.5 unit of flow along the solid edges, and 0.5 unit along the dashed
and dotted edges), and satisfies all theEi bounds.

We now show that in any integral solution, the degree is violated by at factor of at
least2−ǫ. Let us assume that each internal vertex has an outdegree of at mostk(1−ǫ/2),
otherwise this is a violated vertex and we are done. It suffices to show that in this case,
there must be at leastkd(1 − ǫ/2) edges chosen fromE1 in a valid arborescence. This
follows from the simple property (see [BKN08], Prop. 1, for aformal proof) that if a leaf
i does not have path from root to itself using only solid edges,then the edge(i − 1, i)
must be present in the arboresence. Now, if internal degree is at mostk(1 − ǫ/2), then
the number of leaves with a path from root using only solid edges is at most(1−ǫ/2)dkd

which, by our choice ofd, is at mostǫkd/2. Thus at least,kd(1 − ǫ/2) edges must be
chosen fromE1 which proves the result.

Recall that several problems such as the minimum cost arboresence problem can
be cast as a matroid intersection problem. While the degree bounded version of the
minimum cost arborescence problem is well understood [BKN08], not much is known
about its behavior with degree bounds on arbitrary subsets.We now consider themini-
mum crossing polymatroid intersection problem(see Defintion 1) and prove Theorem 5.

The algorithm 1 for minimum crossing polymatroid intersection is based on itera-
tively rounding the following natural LP relaxation.

min cT x

x(S) ≥ max{r1(S), r2(S)} − |F ∩ S| ∀S ⊆ E

x(Ei) ≤ b′i ∀i ∈ W

0 ≤ xe ≤ 1 ∀e ∈ E.



Above,E denotes the set of unfixed elements,F the set of chosen elements,W ⊆ [m]
the set of remaining degree bounds, andb′i (for eachi ∈ W ) the residual degree-bound
in theith constraint.

Algorithm 1 Algorithm for minimum crossing polymatroid intersection.
1: Intially, setF = ∅, W = [m], b′i = bi, for all i ∈ I

2: while E 6= ∅ do
3: Compute an optimal basic solutionx∗ of the LP;
4: for all e ∈ E with x∗(e) = 0 do
5: E ← E \ {e}
6: end for
7: for all e ∈ E with x∗(e) ≥ 1

2
do

8: F ← F ∪ {e}; E ← E \ {e}
9: b′i ← b′i − x∗(e), for all i ∈ W with e ∈ Ei

10: end for
11: for all i ∈ W with |Ei| ≤ ⌈2b′i⌉+ ∆− 1 do
12: W ← W \ {i}
13: end for
14: end while
15: Return the incidence vectorxF of F ;

Note that this algorithm rounds variables of valuex∗(e) ≥ 1
2 to 1, and hence we

loose a factor of two in the cost and in the degree bounds. Theorem 5 follows as a
consequence if we can show that in each iteration, either some variable can be rounded,
or some constraint can be dropped. For this, we prove:

Lemma 1. If x∗ ∈ R
E is a basic optimal solution of(LP2) with 0 < x∗(e) < 1

2 for
all e ∈ E, then there exists at least onei ∈W such that

|Ei| ≤ ⌈2b′i⌉+ ∆− 1

Proof: Sincex∗ is a basic feasible solution, there exist linearly independent tight
setsT1 ⊆ {S ⊆ E | x∗(S) = r1(S)}, T2 ⊆ {S ⊆ E | x∗(S) = r2(S)} and
B ⊆ {Ei ⊆ E | x∗(Ei) = b′i} such that

|E| = |T1|+ |T2|+ |B|.

Sincex∗ is modular andr1, r2 are supermodular on the Boolean lattice(2E ,⊆), it can
be assumed (again, using uncrossing arguments) that each of(T1,⊆) and(T2,⊆) form
a chain. We use the following claim from [BKN08] (which was originally stated for
spanning trees, but immediately extends to any polymatroid).

Claim ([BKN08]). We have|T1|, |T2| ≤
∑

e∈E x∗
e. Additionally, Tj = x∗(E) (for

j ∈ {1, 2}) only if E ∈ Tj .

Suppose (for a contradiction) that for alli ∈ W , |Ei| ≥ ⌈2b′i⌉+∆. For eachi ∈W ,
defineSpi :=

∑

e∈Ei
(1 − 2x∗

e) = |Ei| − 2x∗(Ei). Then we haveSpi ≥ |Ei| − 2b′i ≥
|Ei| − ⌈2b′i⌉ ≥ ∆. Hence

∑

i∈W Spi ≥ ∆ · |W |.



For eache ∈ E, let re := |{i ∈W : e ∈ Ei}| ≤ ∆. Note also that0 < 1−2x∗
e < 1

for eache ∈ E. Now,
∑

i∈W

Spi =
∑

e∈E

re · (1− 2x∗
e) ≤ ∆ ·

∑

e∈E

(1 − 2x∗
e)

= ∆ · (|E| − 2 · x∗(E)) ≤ ∆ · (|E| − |T1| − |T2|)

Thus we have
∑

i∈W Spi ≤ ∆ · |B| ≤ ∆ · |W | with equality only ifE ∈ T1 ∩ T2 (from
Claim C),re = ∆ for all e ∈ E, andB = W .

We now claim that equality
∑

i∈W Spi = ∆ · |W | is not possible. If this were the
case,χ(E) is a constraint in each ofT1 andT2; and

∑

i∈B χ(Ei) =
∑

i∈W χ(Ei) =
∆ · χ(E). However this contradicts the linear independence of constraints inT1 and
B. Thus it must be that

∑

i∈W Spi < ∆ · |W |, which contradicts the assumption that
|Ei| ≥ ⌈2b′i⌉+ ∆ for all i ∈W .

Proof: [Theorem 5] Lemma 1 implies that an improvement is possible in each iteration
of Algorithm 1. Since we only round elements that the LP sets to value at least half, the
cost guarantee is immediate. Consider any degree boundi ∈ [m]; let b′i denote its
residual bound when it is dropped, andF ′ the set of chosen elements at that iteration.
Again, rounding elements of fractional value at least half implies|Ei ∩ F ′| ≤ ⌊2bi −
2b′i⌋ = 2bi−⌈2b′i⌉. Furthermore, the number ofEi-elements in the support of the basic
solution at the iteration when constrainti is dropped is at most⌈2b′i⌉ + ∆ − 1. Thus
the number ofEi-elements chosen in the final solution is at most2bi−⌈2b′i⌉+ ⌈2b′i⌉+
∆− 1 = 2 · bi + ∆− 1

D Minimum Crossing Lattice Polyhedra

Before we studyminimum crossing lattice polyhedra(Definition 2), we give a few ex-
amples of well-known discrete optimization problems whichcan be formalized as the
problem to find an optimal integral vector of a lattice polyhedron.

D.1 Examples of lattice polyhedra

The reductions given here can also be found in [Sch03] and [FKP08], for example.

Polymatroid intersection. Let r1, r2 : E → Z+ be two supermodular rank functions
on the same ground setE, c : E → R and consider the polymatroid intersection
problem

min{cT x | x(T ) ≥ max{r1(T ), r2(T )}∀T ⊆ E, x ∈ {0, 1}E}.

We show that this problem might as well be formulated as a lattice polyhedron problem:
LetE′ andE′′ be two disjoint copies ofE and setẼ = E′∪E′′. We consider the lattice
(F ,⊆,∪,∩) defined on

F = {S ⊆ Ẽ | S ⊆ E′ or E′ ⊆ S}.



The set-valued functionρ : F → 2E and the rank functionr : F → Z+ are now given
by

r(T ′) := r1(T ) and r(Ẽ \ T ′′) := r2(T ) ∀T ⊆ E,

ρ(T ′) := T and ρ(Ẽ \ T ′′) := T ∀T ⊆ E,

whereT ′ andT ′′ are theE′ andE′′-copies, respectively, of the setT . Sinceρ satisfies
the consecutivity and submodularity properties on(F ,⊆,∩,∪), problem

min{cT x |
∑

e∈ρ(S)

xe ≥ r(S), ∀S ∈ F ; x ∈ {0, 1}E}

is a lattice polyhedron problem and equivalent to the polymatroid intersection problem
above.

Shortest paths. Let D = (V, E) be a digraph with edge-costsc : E → R+ and
designated verticess, t ∈ V . In theshortest-path problemone aims to find a directed
s, t-pathP in G of minimum costc(P ) =

∑

e∈P ce. We formulate the shortest-path
problem as a lattice polyhedron problem as follows: Consider the collection of alls, t-
cuts

F = {U ⊆ V | s ∈ U, t 6∈ U},
and map each cutU ∈ F to the set of its outgoing edges; i.e.,ρ(U) := δ+(U) ⊆
2E . It is well-known that the functionρ : F → 2E satisfies the consecutivity and
submodularity properties on(F ,⊆,∩,∪). Since the constant functionr ≡ 1 is certainly
supermodular onF , the shortest-path problem

min{cT x |
∑

e∈δ+(S)

xe ≥ 1, ∀S ∈ F ; x ∈ {0, 1}E}

turns out to be a special instance of the lattice polyhedron problem.

Max flow/min cut in s,t-planar graphs. Let G = (V, E) be a directed or undirected
graph withs, t ∈ V and denote byP ⊆ 2E the collection of all cycle-frees, t-paths in
G. Given edge-capacitiesc : E → R the min cut problem can be formulated as

min{cT x |
∑

e∈P

xe ≥ 1, ∀P ∈ P ; x ∈ {0, 1}E}.

Note that this problem is a lattice polyhedron (with constant rank functionr ≡ 1 and
identity functionρ(P ) = P for all P ∈ P) as soon as we can find a lattice(P ,≤,∨,∧)
on the collection of paths satisfying the consecutivity andsubmodularity properties.
Given a planar representation ofG with s, t on the outer boundary of the representation
(graphs for which such a representation exists are calleds,t-planar graphs), we can
define such a lattice in a natural manner: we simply set

P ≤ Q ⇐⇒ Q is the uppermost path inG[P ∪Q] ∀P, Q ∈ P ,



whereG[P ∪ Q] is the subgraph ofG induced by the edges inP andQ, and theup-
permost pathis constructed greedily as follows: start with the uppermost edge leaving
s and always traverse the next outgoing edge in clockwise order (w.r.t. the planar rep-
resentation). Consequently, the joinP ∨Q is the uppermost path, and the meetP ∧Q
is the lowestmostpath inG(P ∪ Q) (the latter is constructed analoguesly by starting
with the lowests-leaving edge and always traversing the next outgoing edge in coun-
terclockwise order). It is not hard to see that the resultinglattice satisfies the desired
consecutivity and submodularity properties.

We note that the two-phase greedy algorithms described in [Fra99], [FP08] find a
min cut together with a max flow (i.e., the dual solution) in ans, t-planar graph even in
the more general setting with supermodular monotone rank functionr : P → Z+.

Supermodular systems.Following Fujishige [Fuj05], asupermodular system(D, r)
consists of a family of subsetsD ⊆ 2E of a finite setE with ∅, E ∈ D such that(D,⊆
,∪,∩) forms a distributive lattice, together with a supermodularfunctionr : D → R

which is normalized in the senser(∅) = 0. Fujishige described a greedy algorithm
which optimizes a linear function over the base polyhedron of a supermodular system

{x ∈ R
E | x(E) = r(E); x(S) ≥ r(S), ∀S ∈ D}.

Note that our iterative rounding algorithm for the minimum crossing lattice polyhe-
dron problem also applies when we are interested in a basis solution, i.e., one sat-
isfying x(E) = r(E). Since any supermodular system defines a lattice polyhedron
with inclusion-wise ordering, Theorem 7 applies in the special case where we are inter-
ested in an integral vector of a supermodular base polyhedron satisfying certain degree
bounds.

D.2 Algorithm for minimum crossing lattice polyhedra

We consider the minimum crossing lattice polyhedron problem in a slightly more gen-
eral form than Definition 2: we allow bothupper and lower boundson the family
{Ei}mi=1. Let{ai}mi=1 denote the respective lower-bounds, as in Definition 2, let{bi}mi=1

denote the upper-bounds. We first give an algorithm for Theorem 6 and prove it.
The algorithm for minimum crossing lattice polyhedra is based on iterative round-

ing. At each iteration, we maintain the following:

– F ⊆ E of elements that have been chosen into the solution.
– E′ ⊆ E \ F of undecided elements.
– W ⊆ [m] of degree bounds.

Initially E′ = E, F = ∅ andW = [m]. In a generic iteration withE′, F, W , we solve
the following LP relaxation on variables{xe | e ∈ E′}, calledLP lat(E

′, F, W ) :

min cT · x
x(ρ(S)) ≥ r(S)− |F ∩ ρ(S)|, ∀S ∈ F

ai − |F ∩ Ei| ≤ x(Ei) ≤ bi − |F ∩ Ei|, ∀i ∈W
0 ≤ xe ≤ 1, ∀e ∈ E′



Consider an optimal basic feasible solutionx to the above LP relaxation. The algorithm
does one of the following in iteration(E′, F, W ), until E′ = W = ∅.
1. If there ise ∈ E′ with xe = 0, thenE′ ← E′ \ {e}.
2. If there ise ∈ E′ with xe = 1, thenF ← F ∪ {e} andE′ ← E′ \ {e}.
3. If there isi ∈W with |Ei ∩E′| ≤ 2∆, thenW ← W \ {i}.

D.3 Proof of Theorem 6

Assuming that one of the steps (1)-(3) applies at each iteration, it is clear that we obtain
a final solutionF ∗ that has cost at most the optimal value, satisfies the rank constraints,
and violates each degree constraint by at most an additive2∆ − 1. We next show that
one of (1)-(3) applies at each iteration(E′, F, W ).

Lemma 4 Suppose(F ,≤) is a lattice satisfying the consecutive and submodular prop-
erties, and condition(∗), functionr is supermodular, andx is a basic feasible solution
to LP lat with 0 < xe < 1 for all e ∈ E′. Then there exists somei ∈ W with
|Ei ∩ E′| ≤ 2∆.

We first establish some standard uncrossing claims, before proving the lemma. We
also need some more definitions. Two elementsA, B ∈ F are said to becomparableif
eitherA ≤ B or B ≤ A; they arenon-comparableotherwise. A subsetL ⊆ F is called
a chainif L contains no pair of non-comparable elements.

Let r′(S) := r(S)−|F ∩ρ(S)| for all S ∈ F denote the right hand side of the rank
constraints in the LP solved in a generic iteration(E′, F, W ).

Claim. r′ is supermodular.

Proof: This follows from the consecutive and submodular properties of lattice(F ,≤).
Consider anyA, B ∈ F , and

|F ∩ ρA|+ |F ∩ ρB| = |F ∩ (ρA ∪ ρB)|+ |F ∩ (ρA ∩ ρB)|
≥ |F ∩ (ρA∧B ∪ ρA∨B)|+ |F ∩ (ρA ∩ ρB)|
≥ |F ∩ (ρA∧B ∪ ρA∨B)|+ |F ∩ (ρA∧B ∩ ρA∨B)|
= |F ∩ ρA∧B|+ |F ∩ ρA∨B|

The second inequality follows from submodularity (i.e.ρA ∪ ρB ⊇ ρA∧B ∪ ρA∨B),
and the third inequality uses the consecutive propertyρA∧B ∩ ρA∨B ⊆ ρA, ρB (since
A ∧ B ≤ A, B ≤ A ∨ B). This combined with supermodularity ofr impliesr′(A) +
r′(B) ≤ r′(A ∧B) + r′(A ∨B) for all A, B ∈ F .

For any elementA ∈ F , letχ(A) ∈ {0, 1}E′

be the incidence vector ofρ(A) ⊆ E′. Let
T := {A ∈ F | x(ρA) = r′(A)} denote the elements inF that correspond to tight rank
constraints in the LP solutionx of this iteration. Using the fact thatr′ is supermodular
(from above), and by standard uncrossing arguments, we obtain the following.

Lemma 5 If S, T ∈ F satisfyx(ρS) = r′(S) andx(ρT ) = r′(T ), then:

x(ρ(S ∧ T )) = r′(S ∧ T ) and x(ρ(S ∨ T )) = r′(S ∨ T )

Moreover,χ(S) + χ(T ) = χ(S ∧ T ) + χ(S ∨ T ).



Proof: We have the following sequence of inequalities:

r′(S ∧ T ) + r′(S ∨ T ) ≤ x(ρS∧T ) + x(ρS∨T )

= x(ρS∧T ∩ ρS∨T ) + x(ρS∧T ∪ ρS∨T )

≤ x(ρS∧T ∩ ρS∨T ) + x(ρS ∪ ρT )

≤ x(ρS ∩ ρT ) + x(ρS ∪ ρT )

= x(ρS) + x(ρT )

= r′(S) + r′(T )

≤ r′(S ∧ T ) + r′(S ∨ T )

The first inequality is by feasibility ofx, the third inequality is the submodular lattice
property, the fourth inequality is by consecutive property, and the last inequality is su-
permodularity ofr′. Thus we have equality throughout, in particularx(ρ(S ∨ T )) =
r′(S ∨ T ) andx(ρ(S ∧ T )) = r′(S ∧ T ). Finally sincexe > 0 for all e ∈ E′, we also
haveχ(S) + χ(T ) = χ(S ∧ T ) + χ(S ∨ T ).

Lemma 6 ([Sch03]) There exists a chainL ⊆ T such that the vectors{χ(A) | A ∈ L}
are linearly independent and span{χ(B) | B ∈ T }.

We are now ready for the proof of Lemma 4.
Proof: [Lemma 4] |E′| is the number of non-zero variables in basic feasiblex. Hence
there exist tight linearly independent constraints:L ⊆ F corresponding to rank-constraints
andB ⊆ W degree-constraints, such that|E′| = |L| + |B|. Furthermore, by Lemma 6
L is achainin F , say consisting of the elementsS1 < S2 < · · · < Sk. We claim that,

|ρ(Sj) \
(

∪j−1
t=1ρ(St)

)

| ≥ 2, for each1 ≤ j ≤ k (2)

The above condition is clearly true forj = 1: sincex(ρ(S1)) = r′(S1) ≥ 1 (it is
positive and integer-valued), andxe < 1 for all e ∈ E′. Consider anyj ≥ 2. By
the consecutive property onSt ≤ Sj−1 < Sj (for any 1 ≤ t ≤ j − 1), we have

ρ(Sj)∩ρ(St) ⊆ ρ(Sj−1). So,ρ(Sj)\
(

∪j−1
t=1ρ(St)

)

= ρ(Sj)\ρ(Sj−1). We now claim

that |ρ(Sj) \ ρ(Sj−1)| ≥ 2, which would prove (2). SinceSj−1 < Sj , assumption(∗)
implies that there is at least one elemente ∈ ρ(Sj) \ ρ(Sj−1). Moreover, if this is the
only element, i.e., ifρ(Sj) \ ρ(Sj−1) = {e}, thenρ(Sj−1) = ρ(Sj) \ {e}must be true
(again by property(∗)). But this causes a contradiction to the non-integrality ofxe:

xe = x (ρ(Sj))− x (ρ(Sj−1)) = r′ (ρ(Sj))− r′ (ρ(Sj−1)) ∈ Z.

Now, equation (2) implies thatk = |L| ≤ |E′|
2 . Hence|E′| ≤ 2|B|.

Suppose (for contradiction) that|Ei∩E′| ≥ 2∆+1 for all i ∈ W . Then
∑

i∈W |Ei∩
E′| ≥ (2∆ + 1) · |W |. Since each element inE′ appears in at most∆ sets{Ei}i∈W ,
we have∆ · |E′| ≥ ∑

i∈W |Ei ∩ E′| ≥ (2∆ + 1) · |W |. Thus|E′| > 2|W | ≥ 2|B|,
which contradicts|E′| ≤ 2|B| from above.

We are now able to prove the main result of this section:



Proof: [Theorem 6] Since the algorithm only picks1-elements into the solutionF ,
the guarantee on cost can be easily seen. As argued in Lemma 4,at each iteration
(E′, F, W ) one of the Steps (1)-(3) apply. This implies that the quantity |E′| + |W |
decreases by 1 in each iteration; hence the algorithm terminates after at most|E|+|I| it-
erations. To see the guarantee on degree violation, consider anyi ∈ I and let(E′, F, W )
denote the iteration in which it is dropped, i.e. Step (3) applies here with|Ei∩E′| ≤ 2∆
(note that there must be such an iteration, since finallyW = ∅). Since a degree bound
is dropped at this iteration, we have0 < xe < 1 for all e ∈ E′ (otherwise one of the
earlier steps (1) or (2) applies).

1. Lower Bound:ai−|F ∩Ei| ≤ x(Ei∩E′) < |E′∩Ei| ≤ 2∆, i.e.ai ≤ |F ∩Ei|+
2∆ − 1. The final solution contains at least all elements inF , so the degree lower
bound onEi is violated by at most2∆− 1.

2. Upper Bound:The final solution contains at most|F∩Ei|+|E′∩Ei| elements from
Ei. If Ei ∩E′ = ∅, the upper bound onEi is not violated. Else,0 < x(Ei ∩E′) ≤
bi − |F ∩Ei|, i.e.bi ≥ 1 + |F ∩Ei|, and|F ∩Ei|+ |E′ ∩Ei| ≤ bi + 2∆− 1. So
in either case, the final solution violates the upper bound onEi by at most2∆− 1.

Observing that all the steps (1)-(3) preserve the feasibility of theLP lat, it follows that
the final solution satisfies all rank constraints (sinceE′ = ∅ finally).

D.4 Inlcusion-wise ordered lattice polyhedra

We now consider a special case of minimum crossing lattice polyhedra where the lattice
F is ordered by inclusion. This class of lattice polyhedra clearly satisfy assumption(∗),
so Theorem 6 applies. However in this case, we prove the stronger guarantee in Theo-
rem 7 for the setting withonly upper boundsas in Definition 2. The algorithm remains
the same as the one above for Theorem 6. In order to prove Theorem 7 it suffices to
show the following strengthening of Lemma 4.

Lemma 7 Suppose(F ,≤) is a lattice satisfying the consecutive and submodular prop-
erties, and condition

S ≤ T ⇐⇒ ρS ⊆ ρT ∀S, T ∈ F ,

functionr is supermodular, andx is a basic feasible solution toLP lat with 0 < xe < 1
for all e ∈ E′. Then there exists somei ∈W with |Ei ∩ E′| ≤ b′i + ∆− 1.

Proof: Sincex is a basic feasible solution, there exist linearly independent tight rank
function- and degree bound constraintsT andB ⊆W such that

|E′| = |T |+ |B|.

Using uncrossing arguments, we can assume that(T ,≤) forms a chain

T = {T1 < T2 < . . . < Tk}.



Consider an arbitrary pairTi < Ti+1 in T . Sincexe > 0 for all e ∈ E andρ(Ti) ⊂
ρ(Ti+1), it follows that0 < x(ρ(Ti+1) \ ρ(Ti)) and therefore, by the integrality ofr,

x(ρ(Ti+1) \ ρ(Ti)) = x(ρ(Ti+1))− x(ρ(Ti)) = r(Ti+1)− r(Ti) ≥ 1.

Thus,

x(E) ≥ x(ρ(Tk)) =

k−1∑

i=1

x(ρ(Ti+1) \ ρ(Ti)) ≥ k = |T |

with equality only ifE = ρ(Tk). This implies that

|E′| − x(E) = |T |+ |B| − x(E) ≤ |B|. (3)

Let E′
i = E′ ∩ Ei. To prove the statement of the Lemma, it suffices to show:

∑

i∈W

(|E′
i| − b′i) =

∑

i∈W

(|E′
i| − x(Ei)) < ∆|W |.

In order to prove this, define∆e = |{i ∈ W | e ∈ Ei}| and consider the derivations

∑

i∈W

(|E′
i| − x(Ei)) =

∑

i∈W

∑

e∈E′

i

(1− xe) =
∑

e∈E

∆e(1− xe)

= ∆
∑

e∈E

(1− xe)−
∑

e∈E

(∆−∆e)(1 − xe)

≤
︸︷︷︸

eq.(3)

∆|B| −
∑

e∈E

(∆−∆e)(1− xe)

= ∆|W | −∆|W \ B| −
∑

e∈E

(∆−∆e)(1− xe) ≤ ∆|W |.

Note that equality can only hold ifE = ρ(Tk) and∆|W \ B|+ ∑

e∈E(∆ −∆e)(1 −
xe) = 0. The latter can only be true if|B| = |W | and∆e = ∆ for eache ∈ E. But this
would imply that

∑

i∈B

χEi = ∆χE = ∆χTk ,

whereχS ∈ {0, 1}F×E is the incidence vector ofS ∈ F with χS
e = 1 iff e ∈ ρ(S).

However, this contradicts the fact that the constraintsT andB are linearly independent.


