2,125 research outputs found

    Comparison of Dynamic Characteristics of Two Instrumented Tall Buildings

    Get PDF
    Comparison of recorded structural earthquake response and predicted response by dynamic analysis provides vital information to structural designers on the effectiveness of current methods of dynamic analysis. There have been a number of previous studies of this nature, but only a few have paid attention to the three-dimensional nonlinear dynamic behaviour of tall buildings, so there is a need for these types of studies. The purpose of this paper is to study the dynamic properties of two well-instrumented tall steel frame buildings in Los Angeles, California. These building are within a few blocks of each other and have been subjected to ground motions from several earthquakes, among which the most significant are those from the 1994 Northridge earthquake. The results of this study showed that although the buildings were subjected to similar level of ground shaking their different structural systems resulted in remarkably different building response. The differences and similarities of these responses are presented and discussed in this paper. Analyses of the recorded motions from these two buildings were conducted to determine the dynamic characteristics of each structure. Through the different analyses of the recorded a meaningful comparison of building behaviour could be made. The results of this study showed that very meaningful information can be extracted from recorded earthquake data, and that structural engineers can use this information to better understand the dynamic behaviour of very tall buildings. This information can also be used to gain confidence on finite element models used to predict the nonlinear response of buildings due to strong ground shaking.

    A Field Laboratory for Evaluating In Situ

    Get PDF
    Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal? Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from vbn.aau.dk on: October 07, 201

    lmerTest Package: Tests in Linear Mixed Effects Models

    Get PDF
    One of the frequent questions by users of the mixed model function lmer of the lme4 package has been: How can I get p values for the F and t tests for objects returned by lmer? The lmerTest package extends the 'lmerMod' class of the lme4 package, by overloading the anova and summary functions by providing p values for tests for fixed effects. We have implemented the Satterthwaite's method for approximating degrees of freedom for the t and F tests. We have also implemented the construction of Type I - III ANOVA tables. Furthermore, one may also obtain the summary as well as the anova table using the Kenward-Roger approximation for denominator degrees of freedom (based on the KRmodcomp function from the pbkrtest package). Some other convenient mixed model analysis tools such as a step method, that performs backward elimination of nonsignificant effects - both random and fixed, calculation of population means and multiple comparison tests together with plot facilities are provided by the package as well

    Analysis of the Effects of Five Factors Relevant to In Vitro Chondrogenesis of Human Mesenchymal Stem Cells Using Factorial Design and High Throughput mRNA-Profiling

    Get PDF
    The in vitro process of chondrogenic differentiation of mesenchymal stem cells for tissue engineering has been shown to require three-dimensional culture along with the addition of differentiation factors to the culture medium. In general, this leads to a phenotype lacking some of the cardinal features of native articular chondrocytes and their extracellular matrix. The factors used vary, but regularly include members of the transforming growth factor β superfamily and dexamethasone, sometimes in conjunction with fibroblast growth factor 2 and insulin-like growth factor 1, however the use of soluble factors to induce chondrogenesis has largely been studied on a single factor basis. In the present study we combined a factorial quality-by-design experiment with high-throughput mRNA profiling of a customized chondrogenesis related gene set as a tool to study in vitro chondrogenesis of human bone marrow derived mesenchymal stem cells in alginate. 48 different conditions of transforming growth factor β 1, 2 and 3, bone morphogenetic protein 2, 4 and 6, dexamethasone, insulin-like growth factor 1, fibroblast growth factor 2 and cell seeding density were included in the experiment. The analysis revealed that the best of the tested differentiation cocktails included transforming growth factor β 1 and dexamethasone. Dexamethasone acted in synergy with transforming growth factor β 1 by increasing many chondrogenic markers while directly downregulating expression of the pro-osteogenic gene osteocalcin. However, all factors beneficial to the expression of desirable hyaline cartilage markers also induced undesirable molecules, indicating that perfect chondrogenic differentiation is not achievable with the current differentiation protocols

    Using Ordinary Digital Cameras in Place of Near-Infrared Sensors to Derive Vegetation Indices for Phenology Studies of High Arctic Vegetation

    Get PDF
    We thank Mark Gillespie, Nanna Baggesen, and Anne Marit Vik for field assistance. The University in Svalbard (UNIS) provided logistical support. This work was funded by the Norwegian Research Council through the ‘SnoEco’ project (project No. 230970) and Arctic Field Grant (No. 246110/E10). It was supported by the ESA Prodex project ‘Sentinel-2 for High North Vegetation Phenology’ (contract No. 4000110654), the EC FP7 collaborative project ‘Sentinels Synergy Framework’ (SenSyF), funding from The Fram Centre Terrestrial Flagship, also from the EEA Norway Grants (WICLAP project, ID 198571), and from the GRENE Arctic Climate Change Research Project, Ministry of Education, Culture, Sports, Science and Technology in Japan.Peer reviewedPublisher PD
    corecore