804 research outputs found

    Ab initio study of a mechanically gated molecule: From weak to strong correlation

    Get PDF
    The electronic spectrum of a chemically contacted molecule in the junction of a scanning tunneling microscope can be modified by tip retraction. We analyze this effect by a combination of density functional, many-body perturbation and numerical renormalization group theory, taking into account both the non-locality and the dynamics of electronic correlation. Our findings, in particular the evolution from a broad quasiparticle resonance below to a narrow Kondo resonance at the Fermi energy, correspond to the experimental observations.Comment: 4 pages, 3 figure

    Quasiparticle energies for large molecules: a tight-binding GW approach

    Full text link
    We present a tight-binding based GW approach for the calculation of quasiparticle energy levels in confined systems such as molecules. Key quantities in the GW formalism like the microscopic dielectric function or the screened Coulomb interaction are expressed in a minimal basis of spherically averaged atomic orbitals. All necessary integrals are either precalculated or approximated without resorting to empirical data. The method is validated against first principles results for benzene and anthracene, where good agreement is found for levels close to the frontier orbitals. Further, the size dependence of the quasiparticle gap is studied for conformers of the polyacenes (C4n+2H2n+4C_{4n+2}H_{2n+4}) up to n = 30.Comment: 10 pages, 5 eps figures submitted to Phys. Rev.

    Prior-based Coregistration and Cosegmentation

    Get PDF
    We propose a modular and scalable framework for dense coregistration and cosegmentation with two key characteristics: first, we substitute ground truth data with the semantic map output of a classifier; second, we combine this output with population deformable registration to improve both alignment and segmentation. Our approach deforms all volumes towards consensus, taking into account image similarities and label consistency. Our pipeline can incorporate any classifier and similarity metric. Results on two datasets, containing annotations of challenging brain structures, demonstrate the potential of our method.Comment: The first two authors contributed equall

    Scanning Quantum Dot Microscopy

    Get PDF
    Interactions between atomic and molecular objects are to a large extent defined by the nanoscale electrostatic potentials which these objects produce. We introduce a scanning probe technique that enables three-dimensional imaging of local electrostatic potential fields with sub-nanometer resolution. Registering single electron charging events of a molecular quantum dot attached to the tip of a (qPlus tuning fork) atomic force microscope operated at 5 K, we quantitatively measure the quadrupole field of a single molecule and the dipole field of a single metal adatom, both adsorbed on a clean metal surface. Because of its high sensitivity, the technique can record electrostatic potentials at large distances from their sources, which above all will help to image complex samples with increased surface roughness.Comment: main text: 5 pages, 4 figures, supplementary information file: 4 pages, 2 figure

    Immunohistochemical localization patterns for vimentin and other intermediate filaments in calcified ovarian fibrothecoma

    Get PDF
    PROBLEM: To describe immunohistochemical features encountered in ovarian fibrothecoma with correlation to clinical presentation and surgical management. METHOD OF STUDY: A female age 75 presented for evaluation of melena. The patient reported total abdominal hysterectomy and removal of both ovaries 40 years earlier. RESULTS: CA-125 was normal and there was no evidence of hyperestrogen effect. Pelvic CT revealed a partially calcified 7 cm pelvic mass without adenopathy or ascites; ultrasound was confirmatory. Endoscopy identified three benign intestinal tubular adenomas. Following laparoscopic excision of the pelvic tumor immunohistochemichal analysis of the mass showed negative staining for keratin, S100 protein, inhibin, calretinin, melan A, smooth muscle actin, CD34, CD117, and desmin. The tissue was positive for vimentin, however. CONCLUSION: Ovarian fibrothecomas represent an ovarian stromal neoplasm developing in a wide spectrum of clinical settings. Particularly if oophorectomy is stated to have been performed remote from the time of index presentation, the status of the ovaries must be considered whenever pelvic pathology is encountered. We describe a calcified ovarian fibrothecoma identified during gastroenterology investigation and confirmed immunohistochemically via high amplitude vimentin signal

    Integration of Action and Language Knowledge: A Roadmap for Developmental Robotics

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”This position paper proposes that the study of embodied cognitive agents, such as humanoid robots, can advance our understanding of the cognitive development of complex sensorimotor, linguistic, and social learning skills. This in turn will benefit the design of cognitive robots capable of learning to handle and manipulate objects and tools autonomously, to cooperate and communicate with other robots and humans, and to adapt their abilities to changing internal, environmental, and social conditions. Four key areas of research challenges are discussed, specifically for the issues related to the understanding of: 1) how agents learn and represent compositional actions; 2) how agents learn and represent compositional lexica; 3) the dynamics of social interaction and learning; and 4) how compositional action and language representations are integrated to bootstrap the cognitive system. The review of specific issues and progress in these areas is then translated into a practical roadmap based on a series of milestones. These milestones provide a possible set of cognitive robotics goals and test scenarios, thus acting as a research roadmap for future work on cognitive developmental robotics.Peer reviewe

    A cross-center smoothness prior for variational Bayesian brain tissue segmentation

    Full text link
    Suppose one is faced with the challenge of tissue segmentation in MR images, without annotators at their center to provide labeled training data. One option is to go to another medical center for a trained classifier. Sadly, tissue classifiers do not generalize well across centers due to voxel intensity shifts caused by center-specific acquisition protocols. However, certain aspects of segmentations, such as spatial smoothness, remain relatively consistent and can be learned separately. Here we present a smoothness prior that is fit to segmentations produced at another medical center. This informative prior is presented to an unsupervised Bayesian model. The model clusters the voxel intensities, such that it produces segmentations that are similarly smooth to those of the other medical center. In addition, the unsupervised Bayesian model is extended to a semi-supervised variant, which needs no visual interpretation of clusters into tissues.Comment: 12 pages, 2 figures, 1 table. Accepted to the International Conference on Information Processing in Medical Imaging (2019

    Molecular geometry optimization with a genetic algorithm

    Full text link
    We present a method for reliably determining the lowest energy structure of an atomic cluster in an arbitrary model potential. The method is based on a genetic algorithm, which operates on a population of candidate structures to produce new candidates with lower energies. Our method dramatically outperforms simulated annealing, which we demonstrate by applying the genetic algorithm to a tight-binding model potential for carbon. With this potential, the algorithm efficiently finds fullerene cluster structures up to C60{\rm C}_{60} starting from random atomic coordinates.Comment: 4 pages REVTeX 3.0 plus 3 postscript figures; to appear in Physical Review Letters. Additional information available under "genetic algorithms" at http://www.public.iastate.edu/~deaven

    Space-time evolution of electron cascades in diamond

    Full text link
    Here we describe model calculations to follow the spatio-temporal evolution of secondary electron cascades in diamond. The band structure of the insulator has been explicitly incorporated into the calculations as it affects ionizations from the valence band. A Monte-Carlo model was constructed to describe the path of electrons following the impact of a single electron of energy E 250 eV. The results show the evolution of the secondary electron cascades in terms of the number of electrons liberated, the spatial distribution of these electrons, and the energy distribution among the electrons as a function of time. The predicted ionization rates (5-13 electrons in 100 fs) lie within the limits given by experiments and phenomenological models. Calculation of the local electron density and the corresponding Debye length shows that the latter is systematically larger than the radius of the electron cloud. This means that the electron gas generated does not represent a plasma in a single impact cascade triggered by an electron of E 250 eV energy. This is important as it justifies the independent-electron approximation used in the model. At 1 fs, the (average) spatial distribution of secondary electrons is anisotropic with the electron cloud elongated in the direction of the primary impact. The maximal radius of the cascade is about 50 A at this time. As the system cools, energy is distributed more equally, and the spatial distribution of the electron cloud becomes isotropic. At 90 fs maximal radius is about 150 A. The Monte-Carlo model described here could be adopted for the investigation of radiation damage in other insulators and has implications for planned experiments with intense femtosecond X-ray sources.Comment: 26 pages, latex, 13 figure
    corecore