1,715 research outputs found

    Measuring stellar oscillations using equivalent widths of absorption lines

    Get PDF
    Kjeldsen et al. (1995, AJ 109, 1313; astro-ph/9411016) have developed a new technique for measuring stellar oscillations and claimed a detection in the G subgiant eta Boo. The technique involves monitoring temperature fluctuations in a star via their effect on the equivalent width of Balmer lines. In this paper we use synthetic stellar spectra to investigate the temperature dependence of the Balmer lines, Ca II, Fe I, the Mg b feature and the G~band. We present a list of target stars likely to show solar-like oscillations and estimate their expected amplitudes. We also show that centre-to-limb variations in Balmer-line profiles allow one to detect oscillation modes with l<=4, which accounts for the detection by Kjeldsen et al. of modes with degree l=3 in integrated sunlight.Comment: MNRAS (accepted); 7 pages, LaTeX with necessary style file and PostScript figures in a single uuencoded Z-compressed .tar fil

    Accounting Facilities in the European Supercomputing Grid DEISA

    Get PDF
    Account management and resource usage monitoring are essential services for production Grids. The scope of a production Grid infrastructure, the heterogeneity of resources and services, the typical community usage profiles, and the depth of integration of the resource providers regarding operational procedures and policies imply specific requirements for accounting facilities. We present the accounting facilities currently used in production in the Distributed European Infra-structure for the Supercomputing Applications (DEISA). DEISA is a consortium of leading national supercomputing centres currently deploying and operating a persistent, production quality, distributed su-percomputing environment with continental scope. The DEISA accounting facilities gather information from the site-local batch systems and the distributed DEISA user administration system, and generate XML usage records conforming to the OGF usage record specification which are then stored locally in a XML data base at each DEISA site. The distributed accounting information can be fetched by clients such as users, project supervisors, site accounting managers and DEISA supervisors. The information is made available by site-local WSRF-compliant accounting information services that allow for a fine-grained setting of access rights. Each authorized client gets a specific view on the accounting information according to one of the following roles: a) a site accounting manager imports usage records of related home-site users from all DEISA sites for longterm archiving, b) a project supervisor retrieves information to assess the resource usage by his project partners, c) a DEISA supervisor (e.g. someone overlooking the usage on behalf of the DEISA executive committee) gets a report on the global usage of DEISA resources, and d) the user who can retrieve all the accounting information related to his own jobs. The privacy and integrity of the data provided and transferred from the accounting information service running at each site is guaranteed using X.509 certificates for mutual authentication and secure communication channels

    Measurement of the electric dipole moments for transitions to rubidium Rydberg states via Autler-Townes splitting

    Full text link
    We present the direct measurements of electric-dipole moments for 5P3/2nD5/25P_{3/2}\to nD_{5/2} transitions with 20<n<4820<n<48 for Rubidium atoms. The measurements were performed in an ultracold sample via observation of the Autler-Townes splitting in a three-level ladder scheme, commonly used for 2-photon excitation of Rydberg states. To the best of our knowledge, this is the first systematic measurement of the electric dipole moments for transitions from low excited states of rubidium to Rydberg states. Due to its simplicity and versatility, this method can be easily extended to other transitions and other atomic species with little constraints. Good agreement of the experimental results with theory proves the reliability of the measurement method.Comment: 12 pages, 6 figures; figure 6 replaced with correct versio

    Rabi oscillations between ground and Rydberg states and van der Waals blockade in a mesoscopic frozen Rydberg gas

    Full text link
    We present a detailed analysis of our recent observation of synchronous Rabi oscillations between the electronic ground state and Rydberg states in a mesoscopic ensemble containing roughly 100 ultracold atoms [M. Reetz-Lamour \textit{et al.}, submitted, arXiv:0711.4321]. The mesoscopic cloud is selected out of a sample of laser-cooled Rb atoms by optical pumping. The atoms are coupled to a Rydberg state with principal quantum number around 30 by a two-photon scheme employing flat-top laser beams. The influence of residual spatial intensity fluctuations as well as sources of decoherence such as redistribution to other states, radiative lifetime, and laser bandwidth are analysed. The results open up new possibilities for the investigation of coherent many-body phenomena in dipolar Rydberg gases. As an example we demonstrate the van der Waals blockade, a variant of the dipole blockade, for a mesoscopic atom sample

    Physical activity monitoring in Alzheimer’s disease during sport interventions: a multi-methodological perspective

    Get PDF
    IntroductionAssessment methods for physical activity and fitness are of upmost importance due to the possible beneficial effect of physical conditioning on neurodegenerative diseases. The implementation of these methods can be challenging when examining elderly or cognitively impaired participants. In the presented study, we compared three different assessment methods for physical activity from the Dementia-MOVE trial, a 6-months intervention study on physical activity in Alzheimer’s disease. The aim was to determine the comparability of physical activity assessments in elderly participants with cognitive impairment due to Alzheimer’s disease.Material or methods38 participants (mean age 70 ± 7 years) with early-stage Alzheimer’s disease (mean MoCA 18.84 ± 4.87) were assessed with (1) fitness trackers for an average of 12 (± 6) days, (2) a written diary on daily activities and (3) a questionnaire on physical activity at three intervention timepoints. For comparison purposes, we present a transformation and harmonization method of the physical assessment output parameters: Metabolic equivalent of task (MET) scores, activity intensity minutes, calorie expenditure and moderate-to-vigorous physical activity (MVPA) scores were derived from all three modalities. The resulting parameters were compared for absolute differences, correlation, and their influence by possible mediating factors such as cognitive state and markers from cerebrospinal fluid.ResultsParticipants showed high acceptance and compliance to all three assessment methods. MET scores and MVPA from fitness trackers and diaries showed high overlap, whilst results from the questionnaire suggest that participants tended to overestimate their physical activity in the long-term retrospective assessment. All activity parameters were independent of the tested Alzheimer’s disease parameters, showing that not only fitness trackers, but also diaries can be successfully applied for physical activity assessment in a sample affected by early-stage Alzheimer’s disease.DiscussionOur results show that fitness trackers and physical activity diaries have the highest robustness, leading to a highly comparable estimation of physical activity in people with Alzheimer’s disease. As assessed parameters, it is recommendable to focus on MET, MVPA and on accelerometric sensor data such as step count, and less on activity calories and different activity intensities which are dependent on different variables and point to a lower reliability

    Analysis of stellar spectra with 3D and NLTE models

    Full text link
    Models of radiation transport in stellar atmospheres are the hinge of modern astrophysics. Our knowledge of stars, stellar populations, and galaxies is only as good as the theoretical models, which are used for the interpretation of their observed spectra, photometric magnitudes, and spectral energy distributions. I describe recent advances in the field of stellar atmosphere modelling for late-type stars. Various aspects of radiation transport with 1D hydrostatic, LTE, NLTE, and 3D radiative-hydrodynamical models are briefly reviewed.Comment: 21 pages, accepted for publication as a chapter in "Determination of Atmospheric Parameters of B, A, F and G Type Stars", Springer (2014), eds. E. Niemczura, B. Smalley, W. Pyc

    Observation of mesoscopic crystalline structures in a two-dimensional Rydberg gas

    Get PDF
    The ability to control and tune interactions in ultracold atomic gases has paved the way towards the realization of new phases of matter. Whereas experiments have so far achieved a high degree of control over short-ranged interactions, the realization of long-range interactions would open up a whole new realm of many-body physics and has become a central focus of research. Rydberg atoms are very well-suited to achieve this goal, as the van der Waals forces between them are many orders of magnitude larger than for ground state atoms. Consequently, the mere laser excitation of ultracold gases can cause strongly correlated many-body states to emerge directly when atoms are transferred to Rydberg states. A key example are quantum crystals, composed of coherent superpositions of different spatially ordered configurations of collective excitations. Here we report on the direct measurement of strong correlations in a laser excited two-dimensional atomic Mott insulator using high-resolution, in-situ Rydberg atom imaging. The observations reveal the emergence of spatially ordered excitation patterns in the high-density components of the prepared many-body state. They have random orientation, but well defined geometry, forming mesoscopic crystals of collective excitations delocalised throughout the gas. Our experiment demonstrates the potential of Rydberg gases to realise exotic phases of matter, thereby laying the basis for quantum simulations of long-range interacting quantum magnets.Comment: 10 pages, 7 figure

    Ultra-high throughput functional enrichment of large monoamine oxidase (MAO-N) libraries by fluorescence activated cell sorting

    Get PDF
    Directed evolution enables the improvement and optimisation of enzymes for particular applications and is a valuable tool for biotechnology and synthetic biology. However, studies are often limited in their scope by the inability to screen very large numbers of variants to identify improved enzymes. One class of enzyme for which a universal, operationally simple ultra-high throughput (>106 variants per day) assay is not available is flavin adenine dinucleotide (FAD) dependent oxidases. The current high throughput assay involves a visual, colourimetric, colony-based screen, however this is not suitable for very large libraries and does not enable quantification of the relative fitness of variants. To address this, we describe an optimised method for the sensitive detection of oxidase activity within single Escherichia coli (E. coli) cells, using the monoamine oxidase from Aspergillus niger, MAO-N, as a model system. In contrast to other methods for the screening of oxidase activity in vivo, this method does not require cell surface expression, emulsion formation or the addition of an extracellular peroxidase. Furthermore, we show that fluorescence activated cell sorting (FACS) of large libraries derived from MAO-N under the assay conditions can enrich the library in functional variants at much higher rates than via the colony-based method. We demonstrate its use for directed evolution by identifying a new mutant of MAO-N with improved activity towards a novel secondary amine substrate. This work demonstrates, for the first time, an ultra-high throughput screening methodology widely applicable for the directed evolution of FAD dependent oxidases in E. coli

    The Substrate-Bound Crystal Structure of a Baeyer–Villiger Monooxygenase Exhibits a Criegee-like Conformation

    Get PDF
    The Baeyer\u2013Villiger monooxygenases (BVMOs) are a family of bacterial flavoproteins that catalyze the synthetically useful Baeyer\u2013Villiger oxidation reaction. This involves the conversion of ketones into esters or cyclic ketones into lactones by introducing an oxygen atom adjacent to the carbonyl group. The BVMOs offer exquisite regio- and enantiospecificity while acting on a wide range of substrates. They use only NADPH and oxygen as cosubstrates, and produce only NADP+ and water as byproducts, making them environmentally attractive for industrial purposes. Here, we report the first crystal structure of a BVMO, cyclohexanone monooxygenase (CHMO) from Rhodococcus sp. HI-31 in complex with its substrate, cyclohexanone, as well as NADP+ and FAD, to 2.4 \uc5 resolution. This structure shows a drastic rotation of the NADP+ cofactor in comparison to previously reported NADP+-bound structures, as the nicotinamide moiety is no longer positioned above the flavin ring. Instead, the substrate, cyclohexanone, is found at this location, in an appropriate position for the formation of the Criegee intermediate. The rotation of NADP+ permits the substrate to gain access to the reactive flavin peroxyanion intermediate while preventing it from diffusing out of the active site. The structure thus reveals the conformation of the enzyme during the key catalytic step. CHMO is proposed to undergo a series of conformational changes to gradually move the substrate from the solvent, via binding in a solvent excluded pocket that dictates the enzyme\u2019s chemospecificity, to a location above the flavin\u2013peroxide adduct where catalysis occurs.Peer reviewed: YesNRC publication: Ye
    corecore