894 research outputs found

    On the determination of near body orbits using mass concentration models

    Get PDF
    Mathematical model for near-body orbit calculation using mass concentration, perturbation theory, nonlinear equations, geopotentials, and least squares metho

    Appreciation of entertainment

    Get PDF
    The purpose of this article is to examine the experience of appreciation to media entertainment as a unique audience response that can be differentiated from enjoyment. To those ends, the first section provides a conceptualization of appreciation in which we outline how we are using the term and how it is distinct from questions of emotional valence. The second section discusses the types of entertainment portrayals and depictions that we believe are most likely to elicit feelings of appreciation. Here, we suggest that appreciation is most evident for meaningful portrayals that focus on human virtue and that inspire audiences to contemplate questions concerning life’s purpose. In the final section we consider the affective and cognitive components of appreciation, arguing that mixed-affective responses (rather than bi-polar conceptualizations of affective valence) better capture the experience of appreciation and its accompanying feelings states such as inspiration, awe, and tenderness

    The removal of thermally aged films of triacylglycerides by surfactant solutions

    Get PDF
    Thermal ageing of triacylglycerides (TAG) at high temperatures produces films which resist removal using aqueous surfactant solutions. We used a mass loss method to investigate the removal of thermally aged TAG films from hard surfaces using aqueous solutions of surfactants of different charge types. It was found that cationic surfactants are most effective at high pH, whereas anionics are most effective at low pH and a non-ionic surfactant is most effective at intermediate pH. We showed that the TAG film removal process occurs in several stages. In the first ‘‘lag phase’’ no TAG removal occurs; the surfactant first partitions into the thermally aged film. In the second stage, the TAG film containing surfactant was removed by solubilisation into micelles in the aqueous solution. The effects of pH and surfactant charge on the TAG removal process correlate with the effects of these variables on the extent of surfactant partitioning to the TAG film and on the maximum extent of TAG solubilisation within the micelles. Additionally, we showed how the TAG removal is enhanced by the addition of amphiphilic additives such as alcohols which act as co-surfactants. The study demonstrates that aqueous surfactant solutions provide a viable and more benign alternative to current methods for the removal of thermally aged TAG films

    Orion Crew Exploration Vehicle Launch Abort System Guidance and Control Analysis Overview

    Get PDF
    Aborts during the critical ascent flight phase require the design and operation of Orion Crew Exploration Vehicle (CEV) systems to escape from the Crew Launch Vehicle (CLV) and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. Aborts from the launch pad to early in the flight of the CLV second stage are performed using the Launch Abort System (LAS). During this type of abort, the LAS Abort Motor is used to pull the Crew Module (CM) safely away from the CLV and Service Module (SM). LAS abort guidance and control studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the Orion CEV, an overview of the LAS ascent abort mode, and a summary of key LAS abort analysis methods and results

    Initial Observations of Lunar Impact Melts and Ejecta Flows with the Mini-RF Radar

    Get PDF
    The Mini-RF radar on the Lunar Reconnaissance Orbiter's spacecraft has revealed a great variety of crater ejecta flow and impact melt deposits, some of which were not observed in prior radar imaging. The craters Tycho and Glushko have long melt flows that exhibit variations in radar backscatter and circular polarization ratio along the flow. Comparison with optical imaging reveals that these changes are caused by features commonly seen in terrestrial lava flows, such as rafted plates, pressure ridges, and ponding. Small (less than 20 km) sized craters also show a large variety of features, including melt flows and ponds. Two craters have flow features that may be ejecta flows caused by entrained debris flowing across the surface rather than by melted rock. The circular polarization ratios (CPRs) of the impact melt flows are typically very high; even ponded areas have CPR values between 0.7-1.0. This high CPR suggests that deposits that appear smooth in optical imagery may be rough at centimeter- and decimeter- scales. In some places, ponds and flows are visible with no easily discernable source crater. These melt deposits may have come from oblique impacts that are capable of ejecting melted material farther downrange. They may also be associated with older, nearby craters that no longer have a radar-bright proximal ejecta blanket. The observed morphology of the lunar crater flows has implications for similar features observed on Venus. In particular, changes in backscatter along many of the ejecta flows are probably caused by features typical of lava flows

    Evidence for Water Ice on the Moon: Results for Anomalous Polar Craters from the LRO Mini-RF Imaging Radar

    Get PDF
    The Mini-RF radar instrument on the Lunar Reconnaissance Orbiter spacecraft mapped both lunar poles in two different RF wavelengths (complete mapping at 12.6 cm S-band and partial mapping at 4.2 cm X-band) in two look directions, removing much of the ambiguity of previous Earth- and spacecraft-based radar mapping of the Moon's polar regions. The poles are typical highland terrain, showing expected values of radar cross section (albedo) and circular polarization ratio (CPR). Most fresh craters display high values of CPR in and outside the crater rim; the pattern of these CPR distributions is consistent with high levels of wavelength-scale surface roughness associated with the presence of block fields, impact melt flows, and fallback breccia. A different class of polar crater exhibits high CPR only in their interiors, interiors that are both permanently dark and very cold (less than 100 K). Application of scattering models developed previously suggests that these anomalously high-CPR deposits exhibit behavior consistent with the presence of water ice. If this interpretation is correct, then both poles may contain several hundred million tons of water in the form of relatively "clean" ice, all within the upper couple of meters of the lunar surface. The existence of significant water ice deposits enables both long-term human habitation of the Moon and the creation of a permanent cislunar space transportation system based upon the harvest and use of lunar propellant

    Road Network Simulation Using FLAME GPU

    Get PDF
    Demand for high performance road network simulation is increasing due to the need for improved traffic management to cope with the globally increasing number of road vehicles and the poor capacity utilisation of existing infrastructure. This paper demonstrates FLAME GPU as a suitable Agent Based Simulation environment for road network simulations, capable of coping with the increasing demands on road network simulation. Gipps’ car following model is implemented and used to demonstrate the performance of simulation as the problem size is scaled. The performance of message communication techniques has been evaluated to give insight into the impact of runtime generated data structures to improve agent communication performance. A custom visualisation is demonstrated for FLAME GPU simulations and the techniques used are described

    Evidence for Water Ie on the Moon: Results for Anomalous Polar Craters from the LRO Mini-RF Imaging Radar

    Get PDF
    The Mini-RF radar instrument on the Lunar Reconnaissance Orbiter spacecraft mapped both lunar poles in two different RF wavelengths (complete mapping at 12.6 cm S-band and partial mapping at 4.2 cm X-band) in two look directions, removing much of the ambiguity of previous Earth- and spacecraft-based radar mapping of the Moon's polar regions. The poles are typical highland terrain, showing expected values of radar cross section (albedo) and circular polarization ratio (CPR). Most fresh craters display high values of CPR in and outside the crater rim; the pattern of these CPR distributions is consistent with high levels of wavelength-scale surface roughness associated with the presence of block fields, impact melt flows, and fallback breccia. A different class of polar crater exhibits high CPR only in their interiors, interiors that are both permanently dark and very cold (less than 100 K). Application of scattering models developed previously suggests that these anomalously high-CPR deposits exhibit behavior consistent with the presence of water ice. If this interpretation is correct, then both poles may contain several hundred million tons of water in the form of relatively "clean" ice, all within the upper couple of meters of the lunar surface. The existence of significant water ice deposits enables both long-term human habitation of the Moon and the creation of a permanent cislunar space transportation system based upon the harvest and use of lunar propellant

    The UCSC Genome Browser Database: 2008 update

    Get PDF
    The University of California, Santa Cruz, Genome Browser Database (GBD) provides integrated sequence and annotation data for a large collection of vertebrate and model organism genomes. Seventeen new assemblies have been added to the database in the past year, for a total coverage of 19 vertebrate and 21 invertebrate species as of September 2007. For each assembly, the GBD contains a collection of annotation data aligned to the genomic sequence. Highlights of this year's additions include a 28-species human-based vertebrate conservation annotation, an enhanced UCSC Genes set, and more human variation, MGC, and ENCODE data. The database is optimized for fast interactive performance with a set of web-based tools that may be used to view, manipulate, filter and download the annotation data. New toolset features include the Genome Graphs tool for displaying genome-wide data sets, session saving and sharing, better custom track management, expanded Genome Browser configuration options and a Genome Browser wiki site. The downloadable GBD data, the companion Genome Browser toolset and links to documentation and related information can be found at: http://genome.ucsc.ed
    corecore