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ABSTRACT

The observations of a near-body satellite are used

in the determination of certain constants appearing in a

mathematical representation of the gravitational field of

the central body. This representation is based on the

assumption that the mass of the central body can be

closely modeled by several concentrated masses located

near its geometric center. The determination method

employs a perturbation technique, numerical integration

of linear and nonlinear differential equations, least-

Y
	 squares fitting criteria, and matrix inversion to deter-

mine estimates for the parameters involved.

Several models for the representation of central

body gravitational fields are discussed and the numerical

techniques for evaluation of the parameters involved are

briefly reviewed. The computations performed indicate

that the parameters of such models can be estimated

numerically. Some of the problems associated with using

the method described herein to solve typical trajectory

problems are discussed and some actual results are

presented. Finally, suggestions for additional study of

the theory and its applications are proposed.
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NOMENCLATURE

Gm The product of the Newtonian gravitational

constant and the mass of the central body

U Gravitational potential

g Acceleration due to gravity

r Length of the position vector in spherical

coordinates

Co-latitude in spherical coordinates

Longitude in spherical coordinates

Vector appearing in the two-mass model

K Constant appearing in the two-mass model

Mi , di ,	 a Constants appearing in the various n-mass

models

n (	 ) Superscript denoting the known approximation

n+1( Superscript denoting a newly calculated

' approximation

) n Subscript denoting the known approximation

(	 )n Subscript denoting a newly calculated+l

approximation

r

x

i
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CHAPTER I

INTRODUCTION

Knowledge of the gravitational field of the earth

and the moon are of current interest in a wide range of

studies. Pinpoint landings at prescribed points on the

lunar surface require a good representation of the

gravitational field of that body. The future space

stations with long mission times in near-earth orbits

must also use mathematical models to correct for the

gradual deterioration of these orbits caused in part

by the irregular gravitational fields of these bodies.

Much effort has been devoted to the accurate 	 E

determination of space trajectories. Classical

developments have included, most notably, the perturbation 	
1

theory of Encke and others as described by Ehricke [11 and

harmonic series expansions of the geopotential functions

done by Kaula (21 and many others. In each case the

resulting formulation for the solution of an initial

value problem in space orbits results in a complicated

evaluation procedure. However, sophisticated computer

programs incorporating these models have been generated

that yield satisfactory solutions to such problems. Suf-

ficient computer time must be available and a clear

knowledge of the perturbing factors must exist.

1



1

s

2

In any technique for the prediction of long duration

orbits, an accurate model of the gravitational field of the

earth is required. All the existing models (e.g., Ehricke

[11) assume the earth to be an oblate spheroid, circular in

cross section in planes parallel to the equatorial plane,

and elliptic in planes taken through the poles. The cir-

cumpolar ellipse has its semimajor axis in the equatorial

plane and its semiminor axis toward the poles. Quantitatively,

the parameters of these models have been estimated, calculated,

and predicted by various techniques and methods. one notable

effort in this area was the calculation of tesseral and zonal

harmonic coefficients by Holloway (3) using perturbation

techniques for parameter estimation.

In the process of formulating the solution for the 	 11

harmonic series coefficients, Holloway (31 proposed a 	 I

two-mass model for the representation of the gravitational

field of the earth. This thesis expands that model and

examines further the problem of determining the unknown

constants required by that model and others similar to it.

Specifically, it will be shown that a knowledge of the

total position and velocity of a point mass in orbit about

a central force field made up of mass concentrations

located near the geometric center of the system is

sufficient under certain circumstances to determine the

location and mass of each concentration, uniquely, for the

r
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models described herein. Simulations which use this type

of data for the determination of the gravitational potential

of the central body are described.

In the descriptions associated with the simulations

the term "convergence" is used to describe the determination

of a locally unique numerical result. Convergence will then

be taken to mean that all elements of two successive result

vectors agree to a given number of significant decimal

digits, normally five or six. The terms "close" and "small"

are also used to describe results that are convergent (ir,

the sense used here) and whose magnitude are on the order of

10 -5 or 10 -6 , respectively.

4



CHAPTER II

GENERAL THEORY

Basic Assumptions and Formulations

The motion of a space vehicle around the earth is

determined by the forces acting upon its mass and by

some initial values of its state vector at a given time.

Formally, using Newton's law,

F	 ma

are the differential equations of state. Another familiar

form of these differential equations is usually written

r	 f (r,r,t)

where r represents the position, r the velocity,

r̀ the acceleration, and t the time. Again, an initial

value for r, r, and t must be known, and the forces

that affect terms in the differential equations must be

described analytically.

The forces that must be considered are listed in

Gaposchkin and Lambeck (41 as the gravitational attraction

of the earth, sun, moon, and the nongravitational effects

of radiation pressure and air drag. Other sources such

4
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as Ehricke [1) consider, in addition, gravitational effects

of the major planets. The presentation here neglects all

nongravitational forces and the gravitational effects of the

the sun, moon, and planets. Also, of the complications

involved in describing the earth's gravitational field:

namely, precession, nutation, polar motion, rotation, and

temporal variations in the gravitational field; only the

latter two effects are considered here.

In all cases, the central body is considered to be

established relative to an inertial reference frame such

that the axis of rotation of the central force field is

the 2-axis of the system. The X-Y plane is normally
a

called the equatorial plane, and the X-axis normally passes

through the prime meridian of the central body. The

classical form of spherical coordinates is used, and all

differential equations of motion are written assuming a
	 f

point mass in orbit beyond the radius of the central body.

Again the forces described in the equations of motion are

only those of a rotating central force field obeying the

inverse square laws of gravitational attraction to a

point mass in orbit; however, the center of mass of the

central body is not restricted to its geometric center.
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The Two-Mass Model

The model proposed by Holloway (3) assumes the mass

of the earth to be distributed such that, for a dynamic

representation of its gravity field, two concentrated

masses, Km and (1-K)m, could be located at the ends of

a vector p . Fig. 1 illustrates the model and indicates

that orbital motion may be calculated as a function of the

displaced mass concentrations.

Z

X

Figure 1. - The two-mass gravitational model.

The gravitational potential function for the two-

mass model may be expressed as

U = U + U = -Gm
K + -=- K)(2.1)

a	 b	 r a	 r 
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The distances r  and r  are expressed as

r 	 = ((l - K) a p t + r2 + 2(1 - K) Oro) 
1/2
	 (2.2)

r 	 =	 K 2 p 2 + r  - 2Kprl) 1/2	 (2.3)

where

A	 A	 A

P = p cos 00 cos 6 0 i + p cos 00 sin 6 0 i + p sin 00k

(2.4)

r=	 r cos 0 cos
A	 A

6 i+ r cos 0 s in 6 j +
A

p s in	 k (2.5)

tji	 = sin ^ sin 
00

+ cos 0 cos 00 cos (6 -	 6 0 ) (2.6)

A Four-Mass Model

An alternate model is proposed here that is more

flexible than the two-mass model representing the

gravitational potential of the earth or any other central

body. This model assumes that the mass of the central body

is concentrated into four masses with two located along the

axis of rotation and two located in the equatorial plane.

This would seem to follow clearly the standard semimajor

and semiminor axes model of the earth for representing the

mass distribution. Fig. 2 illustrates the model and indicates

that orbital motion may be calculated as a function of the

displaced mass concentrations.

r

r
A
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M im

Figure 2.	 A four-mass model.
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Z

The gravitational potential function for the four-mass

model may be expressed as

0	 1

M 1 + Mj + M 3 + M4U	 U + U + U + U	 -Gm —
1	 2	 3	 4	 r1	 r2	 r3	 r4

(2.7)

The distances r l , r 2 ,  r 3 , and r 4 are expressed as

functions of r, 0. 6, and a as well as their individual

displacements, dl , d2 ,  d 3 , and d4 -

It can be illustrated that the four-mass model

proposed herein can be reduced to the two-mass model proposed

%I
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by Holloway [3]. The components of the vector p indicated

by Eq. (2.4) can be shown to be

P  = p cos 
00 

cos 00

pY = p cos 00 sin 6
0
	(2.8)

pZ = p sin 0

with the assumption that K = 1	 The four-mass model

r illustrated in Fig. 2 shows that a similar sequence of

vectors is

ax = d 1 cos a

ay = d l sin a	 (2.9)

Cr	 = dZ	 2

with the assumption that d 3 = d 4 = 0	 This corresponds

to choosing K = 1	 These components combine to produce
e

the vector

A	 A	 A

	o = d l cos al + d l sin aj + d 
2 

k	 (2.10)

which can be seen to resemble the previously defined

vector, p	 In fact, the two vectors would be the same

provided
ti

d l = p cos 00

d2 = p sin 00



r i

u

10

since it is seen from Figs. 1 and 2 that a = 8 0	A

close examination of these figures also shows the similarity

of the two models and conveys an appreciation for the

flexibility of the four-mass model.

The Parameter Estimation Technique

A system of differential equations whose initial

values are all known can form the basis for the estimation

of certain parameters through known boundary conditions.

As indicated by Doiron (5], Childs [6], Holloway [3], and

Bellman and Kalaba (7), this type of problem can be

approached by perturbation techniques with considerable

success. Consider a vector of first order, normally

nonlinear, differential equations

y

where y is an (nxl)

the equations, t is

is an (mxl) vector of

into the calculations

the vector y This

as an [ (n+m) x  ] syste;

vector of dependent variables for

the independent variable, and A

parameters (constants) that enter

of the time-dependent values of

system of equations can be written

M

y(y ► t,A)
(x) -	 _	 (2.11)

(A)	 0
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Thus the evaluation of A at some initial time becomes

a problem of estimating initial values for the augmented

vector (A).

As indicated by all the noted references, this

system may now be expanded by a Newton-Raphson-Kantorovich

expansion to obtain the related set of linear differential

equations required in the solution algorithm employed here.

The equations ordinarily obtained would be of the form

.	 _
	 07 _(x) n+1 - fn +	 n (K 

n+1	 xn)	 (2.12)

which would be subject to the initial conditions (7(0) )n

In this equation (;'n ) is the standard Jacobian matrix of

the system evaluated at xn	 x, y, and Y  are as before.

The use of the augmented vector and the linearized

system of equations for the estimation of parameters

required by the definition of mass concentration models

of a geopotential field is then an application of the

theory outlined by Doiron (5) and explained in detail by

Childs, et al. (8]. The variables of orbital motion, namely

F and r , form the vector y , and the various param-

eters of the mass model form the vector A 	 Thus the

vector x of Eq. (2.11) must be such that

J.
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r(r,t,A)
(X)	 r	 (2.13)

(i)	 0

and the method of solution requires that values of r ,

r be known at some initial time to , and at selected

boundary condition times, t l , t2 , ..., to for (n) at

least as large as the dimension of A	 In addition, the

(in ) appearing in Eq. 2.12 requires analytical expressions

for Ex 	 differential equations for the system, both
.	 aX

nonlinear and linearized, are given in the following sections.

The Systems of ,Equations

A more detailed illustration of the model indicated
I

by Fig. 2 is given in Fig. 3. The elements of geometry
j

required for the model are then derived and are supported

by other illustrations. A table of partial derivatives

required in the development of the linearized equations is

also given. The equations of motion are given with the

details of the four-mass geometry included. Finally, the

linearized equations indicated by Eq. (2.12) are presented

in detail.

1
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Figure 3. - The detailed four-mass model.
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The variables of the system can be used to develop

an expression for r l 	Let	 a @ - a and introduce

the variable of as indicated by Fig. 40

Z

X

Figure 4. - The detailed geometry of rl•

Thus a2 can be determined as

a 2 -	 r cos	 - dl cos S 
1

2 + (d1 sin 0)2

r2 cos 2 - 2rd 1 cos cos S + d 2 cos t 6 + d 2 sine

Using cost S + sin 2 0 1 , this reduces to

a 2 = r2 cos2 + d2 - 2rd1 cos 0 cos 0
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Now it is seen that

r 2 M ari + (r sin 0) 2

r2 cos t 0 + r 2 sine 0 + d2 - 2rd 1 cos 0 cos

which reduces finally to

1/2

r 
	

^r 2 + d1 . 2rd 1 cos 0 cos 13,	 (2.14)

As illustrated in Fig. 5 1 the development of expressions

for r 2 and r4 is straightforward.

Z

(r, ^, e)

r2
i

M2m
1 `

^	 I
r	 id 2

r	 Ic
4	 I •N	 ,

I^	 INo. Y

d I	 r	 d21
41 °^8	 I

M m ^	 ^^., rl
X	 4	 ^I

^^	 I	
w

d I
41

^	 I	 ^

Figure 5. - The detailed geometry of r 2 and r4 .
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Immediately it is seen that

r2 = (r cos	 2 + (r sin	 _ d2 2

	

= r2 cos t + r2 sin g 	- 2rd2 sin + d2

which reduces to

1/2
r 2 = /r2 + d2 - 2rd 2 sin 0)	 (2.15)

Similarly, it can be determined that

r g = /r2 + d2 + 2rd 4 sin 
^ 1/2	

(2.16)

-X

Z

/ 
r3	

(r	 e)
/ 

M3m	 I

/	 I

	

/i d ♦ / 	 r	 I

	

j
•^^	 ^r sin 0

a Cl/	 IG ^	 ^ ^2	 I
-Y ♦ ------^--	 Y

e	 x.`1+00	 ^\	 i

e^

d3 sin a	 r cos sin e

X

Figure 6. - The detailed geometry of r3.
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There are several ways in which the geometry r 3 can be

expressed in terms of the system variables. Fig. 6

presents a straightforward one. Since 0 6 - a, a

trigonometric identity states that

cos 0 = cos ( 6 - a) = cos 6 cos a + sin a sin 6

The intermediate variable a2 is introduced such that

a 2 = d 3 cos a + r cos 0 cos 61 2 + (d3 sin a + r cos 0 sin 6^2

= d3 + r 2 cos t 	+ 2rd 3 cos O (cos a cos a + sin 0 sin 6)

= d3 + r2 cos t  + 2rd 3 cos ^ cos

Now it is seen that

r3 = (r sin 0) 2 + ar2

which reduces to

r3 = `r2 + d3 +2 rd3 cos ^ cos 0) 
1/2	

(2.17)
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The Nonlinear Equations of Motion

The geopotential function was given in Eq. (2.7) as

U = -Gm-1 +^-2 +^-3 +^-4r l 	 r2	 r 3	 r4

The equations of motion require expressions for

aU	 _ 1aU	 _	 1	 au
Nr	

r 0	 r2 cos
2
 ^ 

ae

These expressions may be derived analytically as follows:

a 1	 a l	 a 1	 a 1r	 r	 r	 (F4-r = -Gm M1 ar + M2 Dr + M 3 —fir + M4 ^--

	

a	 all

-r2
1 aU	 _Gm M	 (F1-1 + M	 r2 + M	 r3 + M	 r4

	

 a^	 r2 1 ^
	

2 a^	 3 go 4

	

a
(F11- (F31	 aU 	 -Gm  

r2 cos 2 0 ae	 r2 cos2 M
1	 ae 

+ M3	 ae

l

N
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but for q representing any variable from (r,^,6)

1

	

a i	 aril	 1 dri

3q _ r q "r2 3q—

Using the partial derivatives from Table I

au -Gm M (r - d
l cos	 cos S)	 (r - d 2 sin ^)

	

" ar -	 l	
r3	

+ M2	
r3

	

1	 2

	

(r + d 3 Cos	 cos	 (r + d 3 sin ^)
+ M 3	 r3	 + M 4	 r3

3	 4

13U	 M_ _ Gm	 rdl sin 0 cos S 
+ M 

-rd 2 cos
_ 

r 2 ao	 r2	
1	

r3	 2	 r.2

(-rd 3 	 4sin 0 cos 6 	rd cos

	

+ M3	 3	 + M^
	

3

	

r 3 	r4

	1	 DU	 -Gm	 (rd, cos 0 sin
-

r 2 cos2	
M

ae	 r2 cos2 	 1	 r 

(-rd 3 cos ^ sin 0)
+ Ni 3	r3

3

P
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The previous terms may be simplified to

-u -Gm r 3+ 3+ 3+ 3
r l	r2	r3	r4

Mcos cos a —1 -1 M. =3 - sin 0 
M 2 d 2 _ M 4 d 4

	

3	 3	 3	 3

	

r 1 	r3	 r2	 r4

-1 8U	 -Gm	 M 
1 
d 
1 

M 
3 
d 
3

r2 ar - r sin ^ cos S — 3-- - — g-

1	 3

cos M2d2 _ M4d4

	

3	 3

	

r2	 r4

dIJ

_	 1	 DU 	 Gm	 Midi
	

M 3 d 3
r2 cost
	 -37r cossin S r3 - 

r3
1	 3

Arranging terms for convenience only, the final expressions

are

M 1  M2  M 3 M
-^ 	 -Gm r + + + 3

r i	r2	r3	r4

+ cos	 cos S M3d3 - 
Mld1 + sin M4d4 _ M2 2

r 3	 r1r 3	 r2

(2.13)

r
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i acr
rya ^a

- 2r ^ = rm s in ^ cos 3=^	 --
r3

- —13-1-
r 1

� --^ -^-- cos 3
r 4

3
r2

1 au	
Gm sin M3d3 Midi_

r 2 cos2 r cos r3
3

r3
1

Thus the equations of motion

r -	 v

^ =	 n

e =	 y

v =	 r(	 + (y + w) 2 cos 2 ^^ - arDr

2̂,v n - (y + W) 2
 cos sin	 -	 amr

2

y = -2(y + w)(r - n tan ^^	 -	 2	
1 

2	
au

r	 cos	 a6

a -	 w

are seen, using the four-mass model, as

r =	 v

^ =	 n

a= Y

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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M	 M	 M	 M
v = r /n 2 + (Y + w) 2 

cos 2 ` - Gm r 3 + 3 + 3 + 3r1	
r2	 r3	 r4

	

+ cos cos M333 - M— 3 + sin	 M 4
3	 3

- M_2 _2
3 r 3 	r1	 r4	 r2

(2.24)

n =-= n - (Y + W)2 cos sin

M
+	

d	 M d	 M d	 M dr s
in	 cos	 3 3_ 1 1 _	 4 4_ 2 2

r	 r3 cos  r 3 	 r3
3	 1	 4	 2

(2.25)

Y = -2(y + w) v - n tan 	 + Gm sin S M 3 d 3 _ M 1 d 1( r 	1	 r cos	 3	 3r 3 	r1

(2.26)

r

	
a = w	 (2.27)

The Linearized Equations of the System

^t

	

	

As stated previously, the notations used in deriving

linearized equations are

23

qn - n (q) = present value of q , some variable of

the problem.

q	 - n+1 
(q) _ new value of q , some variable of

n+1
the problem.
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The linearized equations then may be written as follows:

rn+1 s vn+1

^n+1	 nn+1

en+1	 Yn+1
n( n

vn+1	 vn + ar ern+1 — rn ) + '^ « n+i — On)

+
) (en+l

^ 	'
'ate 	 end + 

n 

'^v dun+1 - un^

+
n( 

avinn+1	 nn^ +	 '-y (Yn +1 	 Yd

+ 

n	

fan +1 	 and +
	

nj av	 n+1 M. _ n 
M

i!1 1	 t

4
n av	 n+1	 nd+ 	 (d i) ( Ji-1	 1

The 0 operator of differential calculus reduces the form to

vn +1 - v  + pin n+1 (q,) _ n (q,)]

and the remaining equations appear as

•	 + 0 • n+1 (q,)_nnn+1 	 nn	 nn
	

(q,)]

Yn+1 _ in + ©Yn n+1 (qi)	 n - (qj)]

A

an+1	
w
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Noting that the following relationships hold

eV	
3timrMi	 3GmM )d i cos t cos H	 3GmMi r - d l cos 0 cos @\V	 Jammi dri

1	 1	 1	 1

W	 ]GmrM2 3GmM 2dI vtn A	 3rmMi^Y - d i min 4^	 3GSw2 dr 2

7r- 	 r ♦ 	 rJ	 r2	
. 

t "` 3r'
2	 d	 2

v	 3GmrM3	 3GMM jd j cos A Cos a	 3GmM3 dri

i	 d	 3

A	 3O M♦ dr ♦

'r4	
CJ _„ a.._

and, using the relations contained in Table I with repeated application of the chain rule f,.r partial

differentiation, the expanded linearized equation for v can be seen to be

M	 M	 d	 M d	 M d	 M d,d	 1	 2	 1	 M	 M3	 ♦ 	 i 3	 1 1	 „l^j A i 1	 2
Vn+l '	 C^r + (Y + ^) Cos 0^ - Cm^r(—

r ,
, + r3 + -^ + ') + cos 0 cos 8^^

M

r) t]	 r3 - t3

1 	 2	 ]	 ♦ 	 7	 l	 ♦ 	 1

M	 M	 M	 M3GMM

1
	i imdr	 j*,,dr	 3G"M dr

+ (r	 - r } X1 2 + lv + ^:} 2 cos t t - Gm 1 + Z + 7 + ♦ + 	 i^ +	 2 f +	 J	 J

	

n	 1

	

n+l	 n	 =7 r3 r3 r:	 r3	 dC	 r;,, °^ "^ rj ra—r
1	 2	 3	 4	 i	 3

	3GMM 4 Ìdr 4 ) 2 1	 "I-	 2	
b1	

+ (-Gm cos ^)
+ r 3 LaF	 + ^ On+1 On^ 2r4 y + u) coo 0 sin ®+ Cm sin 4 coo @ iMad 	 1a1

7 _
	

j /

	

♦ 	 ^	 ^	 r7	
rl

• ^M d	 M d
ill	

IGmM dr dr	 3GmM dr dr	 3GmM dr dr	 3GmM dr dr

	

1 1	 Mg d 2	 1	 1	 1	 2	 2	 2	 3	 7	 3	 ♦ 	 ♦	 4
^- - 3 + J at a0 + 3 dr 0 + —]— aC ^ + J 7[^ ^^ C n+1 fi n,

	\ r
♦ 	 r2	 r1	 , r 2	 r3	 r 

"	 M d	 M d	 3GmM dr dr	 3GmM dr dr] 7	 1)	 1	 1	 1	 3	 3	 3	 (
•	 m cos 0 sin d	 -	 +	 +	 + (v	 - v }toe + ^r	 - n	 {2znM

	

7 ]	 ai	 3	 tom-	 n+1 n	 n+l n
r7	

r1	 rI

7
	r]

"1	 2	 ^	 (M7d7 i M i di + 3GmM 1 dr i dri

+ ^^n.1 - yn) I2r(y + m) cos 0^ + Cu„+i - o	 -Cm cos 0 sinn)	 7	 3	 J	 dr as

	

1	 !	 ri	 ri	 rl

	dr drM1	
n	 n	 Gmd sin :^

	

3	 ^ + Cn+1 (M

	

^	 n	 )^ ! 'Gm! + Gold 1 cos 0 cos
	

+"+1(MZ) - ` (M^+	 i^G 
2 
r +	3G 	

2 j

	

- 3 3 ar 3' ^.	 1)	 {M 2 ( 7
	r 3	 ri	 rI	 r	 r2

+ n+l (M ) _ n(hi)ni-Gmr _ Gmd
3 cos 0 cos 8l	 n+1	 n	 ”'-Gmr	

Gmd ♦ sin A^	 n+1

C r ]	 r3	 r 	 r ♦

• 
a
lcmM cos 0 cos 8 3GmM dr dr 	 GmM sin 0 3GmM dr dr,

1 rJ	 + r3 1 
^ ^f+ ^n+l (d2 ) - "(d 2)^ ^-^-- + r3 2 at -	 + ^n+l(d3) _ "(d3))

	

1	 1	 Z	 2

	

"^
GMM cos 0 cos 8 3GMM	 ]dr dr	 " '

MiG	 sin 0 3G	 dr dr ♦1	 +	 3	 ] + n+1 (d) - "(d )	
1	

(Mi ♦ 	 ♦ 	 2. 2 8

	

a^r

]	 3
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still lofty

^n	 lomidI sin • cos f	 3431011 dri

1	 1

i	 -loltlt,d, a" .	 1(mi drl

z

In	
-3r.wx d l slit • coo A	 Jr.110 drl

` r ._ • r)
7	 1

3-- d[

and again, using Table 1, the expanded lineartoed oqustien for n to

It
	 M d	 l

"1 n•1 '	 ^sv n . IV • W) i cox • sin • ! 11 ^•in ! cas IC 
d	 iid

Y - i ^^ - eae ! `r	
N
a
d

iICY
r i 	r^	 r,

	

' P ^ ?v
	 2-![	

Nid, - N i0	 d	 N,d,	 all

	

♦ rn+l r n `t, -	 iin 1 eo• A^-^- »-^^ - a" •c
c .

- --^-^^ + r^
 f	 i/ 	 7)

M dr dr	 N de dr	 M dr) dr	 M dr dr
n

Md	 Md	 ) //Md	 Md
• lco4 2 1 - rin 4

 01 •	 cos 1 cos f`	 - - ) + sin !l44 - ^) +
[ l	 [1	 11 t4	 r,	 r

^J .
^d^)1 

+ e7 ^$3"r^ • ;^^ ^rj1+ (lP+ i •P ") n f c^ sin • fin A
c	 rl1

	

®,t 	 / ,
P lit t M d	 M dr dr	 N dr dt	 n	 1

	

  ► l	 loan	 1	 1	 1	 1	 7	 7	 l	 l• '^` . "^" • T^3 irr mr + rT 1j	 + (VP.i - ^n^ ^i n' ♦ ^ nn.l nn^
44 1	 !	 L 1	 1

• 
n

{- ^ 
♦ ( rn+l	 Y n) n l't(r + W) coo • sin •^ • (OR,,	

un)°^4^ ain • sin f
1

M d	 M d	 M d[ dt	 M d[ d[
3 l	 1 1	 lGP [J.1	 1	 1	 1	 )	 P+l	 n

\\ 3	 l	 1	 1

11	 (Rol	 n	 \	 C1r	 t	 n•1(Mi) - Nix• P'
	

sin • Cos f -f l +	 1M,) - IM	 n

	

,)) ^r aer • --f +	 l)^

• -ism stn 0 Coe A 11 + ^n•I (Mt ) - "1N!))
 n^:f 

faa !	
1 ♦ 

^n+l ldi)	n(dl))

n	 N)	 P	 M

•	 sin • coos A -f + -3-
IGsW

z'
 dr dr1 ^. 	 ^n•i!d') Na 21) 

r Coe . -;

	

r i 	r r1	 r,

AOra1 dr dr'	 nl	 M	 30M dr dr♦
tT	

+ (P•1 ld i ) - n fd 3))=ain • a" A e3 + r-3s

	

1	 1	 '	 )

	

n	 M	 low dr dr 1+ P+l ld4 ) nida) ^ ew • `3 + ^f•
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mlml I.it IV,

•	 3GmsMldl sin A	 JGPA	 dr 1
.T
jr

1	 rri cox 0	 19 Cos 1 r ar

-latnm^d ] sin b	 ldmM]	 dr]
_,	 ^1	

1—r^	 rr, cox	 r` vou' ® r3

and again using the Contsintn of Table II, the expanded linearized equation for K is soon to be

n	
M d	 Mid

i	 -2 (r + ,) lr - *i tan 4) * rr Cosn A r^ T	 + ^rn.i	 r n ) 2 (°e * W)

l	 3	 1	 1

	

M el	 M d	 ]CAN	 dr dr	 3Gmm	 dr, d r
v	 im sin.,r	 f i	 1 1	 l	 1	 3	 3	 1	 ]

	

r- r m cos f ( 
r;	 r

i
	+ r C^; rt Tb" ?r +	 coo 0 r j ii

,, 	`

^ `

	 l

+	 0	 2R( +	 + Gnu sin	 Asin	 M 3d 3 	 Ml dl +	 3Gm

	

cos m	 r coo3	 T rT 
rr cs's

M dr dr	 M. 4r dr	 n	 M d	 M d
1	 1	 1	 !	 3	 ]	 4Coe3]	 1 1

	

^r d6 ^- + ^i r	 4-47 ®n+i an^ 	 3	 r j
,.

1	 J	 ^	 ]	 1

3Gm	
Ml^drl)" + My^dr3)2	 ^^	 )n -2(v + u?;^ + (n

r ] cos' f s	 r3 tT6	 (	 n+l	 n i	 s	 f	 n+i	 ^n
1	 3	 J

• n ^2(y + w) tan m^ + (.X .l - Yn)nl"Z([ . 
n tan I 	 + (Un+l

ri M d	 M d	 dr dr	 M dr dr

	

I. Cof d 3]	 1 1	 3Gsm	 1	 1 1	 ]	 ]	 3

` r coo 
"r ' " 
is + r3 co

s f'0 iT car cl_a" + r d8" 3—U)
C	 3	 1	 1	 3

ry1
+ n+1 (M ! - n (M ) !-Gm sin 6 d1( + (n+l (M )	 n(M ) 

n 

^Gm sin H d3

	

i	 i 1 r cos	 J I {	 3	 3	 r cos -
f 

r 3

	

1	 11	 3

+ n+l (d )
	

n (d } n l-Gm sin A M l +	
3GmMi	 drl dr1I

	

1	 1 1 r co's^ r3 
r C
'3"" 62 a 'r3 T ar U-11

	

l	 1	 1

)Gm sin A M3	 3GsiM3	 dr3 dr3
+ n+l (d	 n3) - ^d^)^ r cos	

+ rr co^ ^-3	 3
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CHAPTER III

COMPUTATIONAL RESULTS

Several arbitrarily defined models of the earth's

geopotential field were examined, two of which are

reported here as being generally representative of mass

concentration models. The examinations were conducted

as follows: (1) a model was proposed, (2) data points

(boundary conditions) were calculated from an assumed

initial condition using numerical integration, and

(3) the parameter estimation program described by Childs

et al. (8] was modified and used to regenerate parameters

of the model.

A Three-Mass Model of the Earth

In the first model, half the mass is assumed to be

at the geometric center of the earth, and the other half

is located in the equatorial plane as shown in Fig. 7.

Several orbits of a point mass were generated and used

to attempt parameter evaluation. Most of the calculations

used data obtained from an elliptical orbit approximately

200 km by 250 km altitude in a plane of about 40 0 inclina-

tion to the equatorial plane.

28
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Figure 7. - A specific three-mass model of the earth.
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The estimations reported in this paper were limited

to five of the nine parameters of the model described

previously. It was deemed beyond the scope of this study

to attempt evaluation of more parameters. The justification

for this was that most models of central gravitational

fields assume the primary mass to be at the geometric

center of the body and then small perturbations from that

basis are computed. This type of model requires only five

of the nine parameters be estimated. It was assumed that

half of the mass was located at the geometric center (this

corresponds to assuming d 2 = d4 = 0 and M2 + M4 = 0.5),

and attempts were made to estimate values of the remaining

parameters, namely M 1 , M3 , d l , d 3 , and a .

A set of computer runs was made with d l , d3,

M1 , M 3 , and a being estimated from arbitrary guesses at

their prescribed values. The results obtained for these

cases so resembled the results of the four-mass model

study that a separate report of them is not required.

A Four-Mass Model of the Earth

A second model that was given careful consideration

is indicated by Fig. S. In this model, half of the mass

was located in the equatorial plane as before, but the

other half of the mass was divided and moved out from the
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	 a	 35.755°

Figure 8. - A specific four-mass model of the earth.
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geometric center along the axis of rotation. Again several

orbits were generated to serve as boundary conditions for

subsequent parameter estimations.

As before, the estimations reported for this paper

were limited to five of the nine parameters of the model.

The distances, d 2 and d 4 , and the masses located at

these distances, M 2 and M4 , were held at their pre-

scribed values. The computer runs were made in an effort

to estimate M 1 , M 3 , d l , d 3 , and a from arbitrary guesses

at their proper values.

Actual Results of Estimatina the Four-Mass Parameters

The process for evaluating M1 , M3 , d l , d 3 , and a

assumed y(t0 ) to be a point on the orbit exactly above
	 . ,

the equator, and boundary conditions were used. that

spanned about two-thirds of an orbit. The actual boundary

conditions used in the computer runs were taken to be

linear combinations of r and r at about 1,000-second

intervals. A scaling multiplier was used on each so

that the actual boundary conditions were on the order of

1.0. These boundary conditions proved quite successful

compared to other boundary conditions, such as r or r
n

alone and the nonlinear boundary condition r 	 All of

these three types of boundary conditions were used during
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this study, but none matched the success of the linearly

combined r and r

The first computer runs indicated that calculations

leading to convergence to the known model required double

precision, or about 17 decimal digits, for intermediate

calculations. The computer program used for the estimations,

called QUASI and described by Childs et al. [8], was modi-

fied to do all its calculations in double precision. Even

with that modification, convergence to the known values

of the gravitational model was not obtained in a reasonable

number of iterations unless the initial guesses for d1

and d 3 were close to their prescribed values. In fact

with accurate guesses for d 1 and d 3 , almost any

initial guess could be made for M1 . M3 , and a , and

the operations of QUASI would result in convergence in

about 10 iterations. In addition, if all the M i and

a were supplied, the d i were successfully estimated

from many starting points by QUASI in a reasonable number

of iterations.

Estimation of all five of the parameters chosen in

th.s study was not obtained until modifications were made

to QUASI. In its natural form, QUASI is strictly a

Newton-Raphson iteration procedure using (n) variables

i	 1

I
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and at least (n) boundary conditions. At each iteration

a perturbation for each unknown variable of the problem

is calculated by application of the classical Newton-

Raphson scheme for solving such numerical problems. In

the case being described here, the direction of the

perturbations seemed to be proper; however, each indicated

change seemed to be several orders of magnitude too small

for rapid solution of the problem. Thus modifications

were made to QUASI to use a larger step in the same

direction so that the solution might be obtained in

fewer iterations.

Certain variables are used in QUASI in limiting

the magnitude of perturbations calculated in the Newton- 	
v f

Raphson scheme. In this case these variables were con-

venient to develop the algorithm that increased the rate

of convergence. The theory involved in applying Newton's 	
A

method to n-dimensional problems of this type does not

provide any definite proof that the perturbations cal-

culated are the best size for obtaining the desired

solution rapidly. The scheme used in this case was to

let the Newton-Raphson procedure indicate the direction

to step in n-space and to determine the size of the step

by an arbitrary strategy. This scheme is a gradient method

with certain artificial controls.

•
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The controlled gradient scheme was developed by

the following considerations. Let JIBX ill represent the

Cartesian norm of the step indicated by the ith Newton-

Raphson iteration. Program QUASI arbitrarily limits

111MAil1 by a program variable, represented in this dis-

cussion by P	 Thus the ^)^All! step is always limited

to

IMAN ill

where typical values of P as supplied by the program

user range from 0.5 to 20.0, depending on the type of

problem being solved.

The strategy employed here was somewhat different

since the predicted step on a Newton-Raphson iteration

had a tendency to be quite small relative to the change

needed for convergence. The algorithm is described by

the logic flow chart given in Fig. 9. In words, the

actual algorithm that was developed can be described

by the following steps:

k
1. Perform sufficient Newton-Raphson steps such

that the direction indicated is essentially the same

EAN*
i

b
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GIVEN:	 P, @'I 1M1 , Ex1

D1	
1-1 • n 1 D2 i ^1-2 •	 i-1, D3 a EX 1-3 • ^1-2

k,	 0 INITIALLY

Figure 9. - Logic flow of gradient step-size control.
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(in n-space) for at least three consecutive steps. This

directional idea is calculated as the vector dot product

of three consecutive (unitized) ZAXi vectors produced by

the Newton-Raphson iterations. When this dot product

is near unity in two successive vectors, the direction

of the two vectors is said to be the same. When four

such successive ZAi vectors are found, proceed to step 2.

2. Take one step along the indicated gradient, i.e.,

the gradient of the latest Newton-Raphson step, of an

arbitrarily computed size, namely

P KAKi 	 FAi
IIU111

3. Evaluate the dot product of unitized EAi , the

last gradient step, and unitized TAi _ 1. If this is near

unity, repeat step 2. If this dot product is negative,

it can be interpreted as indicating the objective has

been overstepped. If this dot product is positive but

not near unity, it can be interpreted as indicating that

the gradient being used is no longer accurate. If either

of the last two situations exists, proceed to step 4.

4. Return to step 1 except for every fourth

entry of step 4; on those entries, the step control, P

is halved before returning to step 1.



A

A significant point must be made relative to the

ability of QUASI to satisfy the given boundary conditions.

Almost any initial guess for M 1 , M3 , d l , d 3 , and a would

be modified by the standard operations of QUASI within

seven to 10 iterations to provide a fit of at least three

significant decimal digits between the given and calculated

boundary conditions. The results indicated for the param-

eters of the four-mass model would, in some cases, not

be accurate to even one decimal digit. In fact, all the

cases investigated, with the exception of using the true

values for all initial guesses, produced unacceptable

results; i.e. at least one parameter was not estimated

accurately. It was estimated that QUASI would have

required at least 2000 iterations to have obtained an

acceptable answer. With the special modifications

described above, results that match the known values of

the stated parameters to four significant decimal digits

were obtained in about 60 iterations. The significant

point is that to provide this accuracy in the parameters

being estimated, the computer program had to obtain seven

and eight significant decimal digits of agreement for the

boundary conditions. This certainly verifies both the

need for double precision and the need for a specially

devised strategy for convergence in the five variables.

i
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A comparison of the data for the standard QUASI and

the modified program is given in Table II. These data

...,, support the claims of the preceding paragraph. The differ-

ence in the rate of convergence of the two schemes becomes

evident upon thorough examination of the presented data.

It may again be stated that convergence seems assured by

the standard Newton-Raphson procedure. However, the cal-

culations of so many consecutive steps of small size, all

in the proper direction for convergence, lead to the con-

clusion that the function being evaluated produces inordin-

ately small changes. This conclusion of a good direction,

or gradient, for convergence allows for the significantly

increased step size utilized to obtain the rapid convergence

of the modified method.

Problems Associated with Using Actual Orbit Data^	 r

Actual spacecraft orbital data from the various

Apollo missions were available in some limited forms.

These data were obtainable in terms of earth-based radar

sightings during earth and lunar orbits. These data were

examined only to insure that the boundary conditions used

in the models presented here represent meaningful boundary

conditions in actual orbit data. The utilization of r

and r in the model cases appears to closely resemble

the utilization of range and range rate normally recorded

I	 1

%I
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in radar sightings.

used because of the

available range and

data. However, the

data were beyond th,

No earth orbit

effort involved

range rate data

complexities of

scope of this

data was actually

in converting the

into r and r

using real world

,►ork .

For an analysis of the lunar gravitational potential,

data were obtained in a form reduced from earth-based

sightings by a computer program developed by Clark et al. [91

for one lunar orbit during the Apollo 11 mission. The

actual mission data had been manipulated considerably

and had been fit, through orbital prediction schemes, to

a formal model of the lunar potential field. Some computer

runs were made in an attempt to estimate a three-mass model

that would duplicate the orbital data. The complexities

of the coordinate system and scaling differences were

sufficient to preclude any definite conclusion to this

work.
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CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The results of the computer runs made with boundary

conditions taken from orbit points around the three- and

four-mass models indicate the adequacy of the method to

solve the boundary value problem. As indicated previously,

agreement of seven significant decimal digits between the

given and calculated boundary conditions was obtained. In

addition, five of the nine parameters defining the gravi-

tational potential model were estimated to four significant

decimal digits via the solution of the boundary value

problem.

A. special strategy was required for convergence to

the desired results in a reasonable number of iterations.

A standard Newton-Raphson technique was coupled with a

gradient search algorithm. The gain in convergence was

remarkable (60 iterations versus an estimated 2000), par-

ticularly considering that the method developed should be

applicable to any system. It was concluded that the con-

trolled gradient-stepping technique should in general

compare favorably with a standard Newton-Raphson procedure

in solving n-dimensional problems.
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Finally it was concluded that mass concentration

models can be used to determine near-body orbits for certain

central force fields. The results of estimating the

numerical descriptions of the models examined herein indicate

that such models can be determined from observations of a

combination of r (range) and r (range rate) of the orbiting

body. Although actual earth or moon orbit data have not

yet been used successfully, the results of the work per-

formed so far indicate that the gravitational potential of

such bodies can be represented by mass concentration models.

Recommended Additional Work

Several items must be mentioned as incomplete in

the investigations reported here. These may be described

as follows:

Rate of Convergence. — The rate of convergence of

the standard process is slow when the initial guesses are

not near the true values of the parameters being estimated.

Employing second derivatives in the linearized equations

is at least one idea that should be given proper consideration.

Changes in Scaling. -- The convergence character-

istics observed in the computer runs reported here may

have been caused by scaling problems. A kilogram-kilometer-

second measuring system was used. A possible improvement

might be a slug-ton-earth radii-hour measuring system.

r
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Application to Real Orbital Data. — The measurement

of gravity forces over the surface of the earth has led to

the definition of a geoid describing the gravity of the

earth as an oblate spheroid with undulations in its surface.

Uotila [10], Hirvonen [11], and others have presented

various charts and supporting equations that describe the

undulations of surface gravity forces. Under close examina-

tion, each chart reinforces the idea of an n-mass model of

the earth's geopotential. Considerable effort should be

expended in continuing such an investigation.

In addition the observation of lunar orbits leads

to the conclusion that the potential function of the moon
is varying with time in some way not yet properly under-

stood. Further investigation into the application of

n-mass models of the lunar potential are also proposed.

It must be remarked that the perturbations of

orbits about the earth and the moon caused by irregular-

ities in the gravity potential function of those bodies

are considered of the same order of magnitude as those

caused by other forces present in the system. To properly 	 f

study the perturbations caused by irregularities in the	 j

potential field, all these other extraneous forces must be

included in the model before actual spacecraft data can be

4
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