18 research outputs found

    Smallholder Zebu and Forage Production Development in Central Madagascar

    Get PDF
    Poverty in the Central Highlands of Madagascar is partly driven by inefficient exploitation of native forages and poor livestock nutrition. Zebus are of importance as cultural symbols, but this tradition has grown disconnected from agricultural policy. This project is working with three central highland communities near the protected areas of Itremo, Ibity and Ankafobe, to boost rangeland productivity and trial management methods which will support key forage grasses and improve livestock nutrition. A severe nitrogen deficiency compounded by extremely acidic soil conditions and low phosphorus is observed across the three sites. The lowest grazing capacity of an estimated 0.7 livestock unit per hectare and biomass production of 1600 kg/ha is observed at Ankafobe, the highest elevation windy site with fires that are almost annual. Low production is due to acidic soils with a lack of phosphorus as well as likely iron toxicity. The project works with 90 households owning a total 150 female zebu, 1-5 per household. The project initiated 3 demonstration farms to show the planting of sorghum for silage, harvesting of the native grasses for hay, and building a secure barn meeting at least minimum animal care standards, using local materials to protect the livestock from the weather and theft which is sadly perceived to be common. In the first year the project produced the highest yields in the most remote and fertile site of Itremo, with 365 kg of sorghum silage from 0.5 ha and 165 kg of Brachiaria hay from 0.5 ha. Five households based in the milk producing region of eastern Ibity have completed new barns. Fifty percent of households at Ibity successfully fed silage and hay to their zebu for the first time. Madagascar remains famous for subsistence farming and rural poverty with a long-term decline in livestock, but substantial opportunity nevertheless exists for integrated crop and livestock production, alongside the protection of biodiversity in nearby forests

    Madagascar’s extraordinary biodiversity: Threats and opportunities

    Get PDF
    Madagascar's unique biota is heavily affected by human activity and is under intense threat. Here, we review the current state of knowledge on the conservation status of Madagascar's terrestrial and freshwater biodiversity by presenting data and analyses on documented and predicted species-level conservation statuses, the most prevalent and relevant threats, ex situ collections and programs, and the coverage and comprehensiveness of protected areas. The existing terrestrial protected area network in Madagascar covers 10.4% of its land area and includes at least part of the range of the majority of described native species of vertebrates with known distributions (97.1% of freshwater fishes, amphibians, reptiles, birds, and mammals combined) and plants (67.7%). The overall figures are higher for threatened species (97.7% of threatened vertebrates and 79.6% of threatened plants occurring within at least one protected area). International Union for Conservation of Nature (IUCN) Red List assessments and Bayesian neural network analyses for plants identify overexploitation of biological resources and unsustainable agriculture as themost prominent threats to biodiversity. We highlight five opportunities for action at multiple levels to ensure that conservation and ecological restoration objectives, programs, and activities take account of complex underlying and interacting factors and produce tangible benefits for the biodiversity and people of Madagascar

    Madagascar’s extraordinary biodiversity: Evolution, distribution, and use

    Get PDF
    Madagascar's biota is hyperdiverse and includes exceptional levels of endemicity. We review the current state of knowledge on Madagascar's past and current terrestrial and freshwater biodiversity by compiling and presenting comprehensive data on species diversity, endemism, and rates of species description and human uses, in addition to presenting an updated and simplified map of vegetation types. We report a substantial increase of records and species new to science in recent years; however, the diversity and evolution of many groups remain practically unknown (e.g., fungi and most invertebrates). Digitization efforts are increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge and identifying gaps in our understanding, particularly as species richness corresponds closely to collection effort. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. We highlight humid forests as centers of diversity and endemism because of their role as refugia and centers of recent and rapid radiations. However, the distinct endemism of other areas, such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest, is also biologically important despite lower species richness. The documented uses of Malagasy biodiversity are manifold, with much potential for the uncovering of new useful traits for food, medicine, and climate mitigation. The data presented here showcase Madagascar as a unique living laboratory for our understanding of evolution and the complex interactions between people and nature. The gathering and analysis of biodiversity data must continue and accelerate if we are to fully understand and safeguard this unique subset of Earth's biodiversity

    Long-transient conoscopic pattern technique

    No full text
    0038-1098Recent results on laser induced anisotropy in terbium gallium garnet are extended to the dynamic regime. We observed that the characteristic conoscopic pattern formation time presents a quadratic dependence on the beam size. The observed pattern intensity is accounted for by a simple analytical formula. The transient refractive index change due to thermal stress in the terbium gallium garnet is determined. (C) 1999 Elsevier Science Ltd. All rights reserved

    Genome-wide genotyping elucidates the geographical diversification and dispersal of the polyploid and clonally propagated yam (Dioscorea alata L.)

    Get PDF
    Open Access Article; Published online: 27 Jun 2020Background and Aims Inferring the diffusion history of many human-dispersed species is still not straightforward due to unresolved past human migrations. The centre of diversification and routes of migration of the autopolyploid and clonally propagated greater yam, Dioscorea alata, one of the oldest edible tubers, remain unclear. Here, we address yam demographic and dispersal history using a worldwide sample. Methods We characterized genome-wide patterns of genetic variation using genotyping by sequencing 643 greater yam accessions spanning four continents. First, we disentangled the polyploid and clonal components of yam diversity using allele frequency distribution and identity by descent approaches. We then addressed yam geographical origin and diffusion history with a model-based coalescent inferential approach. Key Results Diploid genotypes were more frequent than triploids and tetraploids worldwide. Genetic diversity was generally low and clonality appeared to be a main factor of diversification. The most likely evolutionary scenario supported an early divergence of mainland Southeast Asian and Pacific gene pools with continuous migration between them. The genetic make-up of triploids and tetraploids suggests that they have originated from these two regions before westward yam migration. The Indian Peninsula gene pool gave origin to the African gene pool, which was later introduced to the Caribbean region. Conclusions Our results are congruent with the hypothesis of independent domestication origins of the two main Asian and Pacific gene pools. The low genetic diversity and high clonality observed suggest a strong domestication bottleneck followed by thousands of years of widespread vegetative propagation and polyploidization. Both processes reduced the extent of diversity available for breeding, and this is likely to threaten future adaptation

    The effects of transparency on trust in and acceptance of a content-based art recommender

    Get PDF
    The increasing availability of (digital) cultural heritage artefacts offers great potential for increased access to art content, but also necessitates tools to help users deal with such abundance of information. User-adaptive art recommender systems aim to present their users with art content tailored to their interests. These systems try to adapt to the user based on feedback from the user on which artworks he or she finds interesting. Users need to be able to depend on the system to competently adapt to their feedback and find the artworks that are most interesting to them. This paper investigates the influence of transparency on user trust in and acceptance of content-based recommender systems. A between-subject experiment (N = 60) evaluated interaction with three versions of a content-based art recommender in the cultural heritage domain. This recommender system provides users with artworks that are of interest to them, based on their ratings of other artworks. Version 1 was not transparent, version 2 explained to the user why a recommendation had been made and version 3 showed a rating of how certain the system was that a recommendation would be of interest to the user. Results show that explaining to the user why a recommendation was made increased acceptance of the recommendations. Trust in the system itself was not improved by transparency. Showing how certain the system was of a recommendation did not influence trust and acceptance. A number of guidelines for design of recommender systems in the cultural heritage domain have been derived from the study’s results
    corecore