489 research outputs found

    Actions of D-Ala2-D-Leu5-enkephalin and dynorphin A (1–17) on neocortical neurons in vitro

    Get PDF
    Intracellular recordings were made from neocortical neurons in vitro. Application of D-Ala2-D-Leu5-enkephalin (DADL) by different methods produced a decrease in EPSP amplitude and in the amplitude of L-glutamate-induced depolarizations without changes in membrane potential or membrane input resistance. The DADL effects were blocked by naloxone and persisted when synaptic transmission was depressed, suggesting DADL acts on postsynaptically located opiate receptors. With dynorphin A (1–17), depolarizations, hyperpolarizations, decreases and increases in EPSP were observed, but never an anti-glutamate effect

    Toward a New Kind of Asteroseismic Grid Fitting

    Get PDF
    Recent developments in instrumentation (e.g., in particular the Kepler and CoRoT satellites) provide a new opportunity to improve the models of stellar pulsations. Surface layers, rotation, and magnetic fields imprint erratic frequency shifts, trends, and other non-random behavior in the frequency spectra. As our observational uncertainties become smaller, these are increasingly important and difficult to deal with using standard fitting techniques. To improve the models, new ways to compare their predictions with observations need to be conceived. In this paper we present a completely probabilistic (Bayesian) approach to asteroseismic model fitting. It allows for varying degrees of prior mode identification, corrections for the discrete nature of the grid, and most importantly implements a treatment of systematic errors, such as the "surface effects." It removes the need to apply semi- empirical corrections to the observations prior to fitting them to the models and results in a consistent set of probabilities with which the model physics can be probed and compared. As an example, we show a detailed asteroseismic analysis of the Sun. We find a most probable solar age, including a 35 +- 5 million year pre-main sequence phase, of 4.591 billion years, and initial element mass fractions of X_0 = 0.72, Y_0 = 0.264, Z_0 = 0.016, consistent with recent asteroseismic and non-asteroseismic studies.Comment: 15 pages, 5 figures, accepted for publication in The Astrophysical Journal; v2 contains minor changes made in the proofs (updated references & corrected typos

    Characterization of the first true coaxial 18-fold segmented n-type prototype detector for the GERDA project

    Get PDF
    The first true coaxial 18-fold segmented n-type HPGe prototype detector produced by Canberra-France for the GERDA neutrinoless double beta-decay project was tested both at Canberra-France and at the Max-Planck-Institut fuer Physik in Munich. The main characteristics of the detector are given and measurements concerning detector properties are described. A novel method to establish contacts between the crystal and a Kapton cable is presented.Comment: 21 pages, 16 Figures, to be submitted to NIM

    Module production of the one-arm AFP 3D pixel tracker

    Full text link
    The ATLAS Forward Proton (AFP) detector is designed to identify events in which one or two protons emerge intact from the LHC collisions. AFP will consist of a tracking detector, to measure the momentum of the protons, and a time of flight system to reduce the background from multiple proton-proton interactions. Following an extensive qualification period, 3D silicon pixel sensors were selected for the AFP tracker. The sensors were produced at CNM (Barcelona) during 2014. The tracker module assembly and quality control was performed at IFAE during 2015. The assembly of the first AFP arm and the following installation in the LHC tunnel took place in February 2016. This paper reviews the fabrication process of the AFP tracker focusing on the pixel modules.Comment: PIXEL 2016 proceedings; Submitted to JINS

    Competition between electronic cooling and Andreev dissipation in a superconducting micro-cooler

    Full text link
    We discuss very low temperature experiments on superconducting micro-coolers made of a double Normal metal - Insulator - Superconductor junction. We investigate with a high resolution the differential conductance of the micro-cooler as well as of additional probe junctions. There is an explicit crossover between the single quasi-particle current and the phase-coherent Andreev current. We establish a thermal model by considering the thermal contribution due to the Andreev current. The related increase of the electron temperature is discussed, including the influence of several parameters like the phase-coherence length or the tunnel junction transparency

    Effect of transport-induced charge inhomogeneity on point-contact Andreev reflection spectra at ferromagnet-superconductor interfaces

    Full text link
    We investigate the transport properties of a ferromagnet-superconductor interface within the framework of a modified three-dimensional Blonder-Tinkham-Klapwijk formalism. In particular, we propose that charge inhomogeneity forms via two unique transport mechanisms, namely, evanescent Andreev reflection and evanescent quasiparticle transmission. Furthermore, we take into account the influence of charge inhomogeneity on the interfacial barrier potential and calculate the conductance as a function of bias voltage. Point-contact Andreev reflection (PCAR) spectra often show dip structures, large zero-bias conductance enhancement, and additional zero-bias conductance peak. Our results indicate that transport-induced charge inhomogeneity could be a source of all these anomalous characteristics of the PCAR spectra.Comment: 9 pages, 6 figure

    Energy dependent counting statistics in diffusive superconducting tunnel junctions

    Full text link
    We present an investigation of the energy dependence of the full charge counting statistics in diffusive normal-insulating-normal-insulating-superconducting junctions. It is found that the current in general is transported via a correlated transfer of pairs of electrons. Only in the case of strongly asymmetric tunnel barriers or energies much larger than the Thouless energy is the pair transfer uncorrelated. The second cumulant, the noise, is found to depend strongly on the applied voltage and temperature. For a junction resistance dominated by the tunnel barrier to the normal reservoir, the differential shot noise shows a double peak feature at voltages of the order of the Thouless energy, a signature of an ensemble averaged electron-hole resonance.Comment: 8 pages, 5 figure

    Predicting the detectability of oscillations in solar-type stars observed by Kepler

    Full text link
    Asteroseismology of solar-type stars has an important part to play in the exoplanet program of the NASA Kepler Mission. Precise and accurate inferences on the stellar properties that are made possible by the seismic data allow very tight constraints to be placed on the exoplanetary systems. Here, we outline how to make an estimate of the detectability of solar-like oscillations in any given Kepler target, using rough estimates of the temperature and radius, and the Kepler apparent magnitude.Comment: 21 pages, 6 figures, accepted for publication Astrophysical Journa
    corecore