489 research outputs found
Actions of D-Ala2-D-Leu5-enkephalin and dynorphin A (1–17) on neocortical neurons in vitro
Intracellular recordings were made from neocortical neurons in vitro. Application of D-Ala2-D-Leu5-enkephalin (DADL) by different methods produced a decrease in EPSP amplitude and in the amplitude of L-glutamate-induced depolarizations without changes in membrane potential or membrane input resistance. The DADL effects were blocked by naloxone and persisted when synaptic transmission was depressed, suggesting DADL acts on postsynaptically located opiate receptors. With dynorphin A (1–17), depolarizations, hyperpolarizations, decreases and increases in EPSP were observed, but never an anti-glutamate effect
Toward a New Kind of Asteroseismic Grid Fitting
Recent developments in instrumentation (e.g., in particular the Kepler and
CoRoT satellites) provide a new opportunity to improve the models of stellar
pulsations. Surface layers, rotation, and magnetic fields imprint erratic
frequency shifts, trends, and other non-random behavior in the frequency
spectra. As our observational uncertainties become smaller, these are
increasingly important and difficult to deal with using standard fitting
techniques. To improve the models, new ways to compare their predictions with
observations need to be conceived. In this paper we present a completely
probabilistic (Bayesian) approach to asteroseismic model fitting. It allows for
varying degrees of prior mode identification, corrections for the discrete
nature of the grid, and most importantly implements a treatment of systematic
errors, such as the "surface effects." It removes the need to apply semi-
empirical corrections to the observations prior to fitting them to the models
and results in a consistent set of probabilities with which the model physics
can be probed and compared. As an example, we show a detailed asteroseismic
analysis of the Sun. We find a most probable solar age, including a 35 +- 5
million year pre-main sequence phase, of 4.591 billion years, and initial
element mass fractions of X_0 = 0.72, Y_0 = 0.264, Z_0 = 0.016, consistent with
recent asteroseismic and non-asteroseismic studies.Comment: 15 pages, 5 figures, accepted for publication in The Astrophysical
Journal; v2 contains minor changes made in the proofs (updated references &
corrected typos
Characterization of the first true coaxial 18-fold segmented n-type prototype detector for the GERDA project
The first true coaxial 18-fold segmented n-type HPGe prototype detector
produced by Canberra-France for the GERDA neutrinoless double beta-decay
project was tested both at Canberra-France and at the Max-Planck-Institut fuer
Physik in Munich. The main characteristics of the detector are given and
measurements concerning detector properties are described. A novel method to
establish contacts between the crystal and a Kapton cable is presented.Comment: 21 pages, 16 Figures, to be submitted to NIM
Module production of the one-arm AFP 3D pixel tracker
The ATLAS Forward Proton (AFP) detector is designed to identify events in
which one or two protons emerge intact from the LHC collisions. AFP will
consist of a tracking detector, to measure the momentum of the protons, and a
time of flight system to reduce the background from multiple proton-proton
interactions. Following an extensive qualification period, 3D silicon pixel
sensors were selected for the AFP tracker. The sensors were produced at CNM
(Barcelona) during 2014. The tracker module assembly and quality control was
performed at IFAE during 2015. The assembly of the first AFP arm and the
following installation in the LHC tunnel took place in February 2016. This
paper reviews the fabrication process of the AFP tracker focusing on the pixel
modules.Comment: PIXEL 2016 proceedings; Submitted to JINS
Competition between electronic cooling and Andreev dissipation in a superconducting micro-cooler
We discuss very low temperature experiments on superconducting micro-coolers
made of a double Normal metal - Insulator - Superconductor junction. We
investigate with a high resolution the differential conductance of the
micro-cooler as well as of additional probe junctions. There is an explicit
crossover between the single quasi-particle current and the phase-coherent
Andreev current. We establish a thermal model by considering the thermal
contribution due to the Andreev current. The related increase of the electron
temperature is discussed, including the influence of several parameters like
the phase-coherence length or the tunnel junction transparency
Effect of transport-induced charge inhomogeneity on point-contact Andreev reflection spectra at ferromagnet-superconductor interfaces
We investigate the transport properties of a ferromagnet-superconductor
interface within the framework of a modified three-dimensional
Blonder-Tinkham-Klapwijk formalism. In particular, we propose that charge
inhomogeneity forms via two unique transport mechanisms, namely, evanescent
Andreev reflection and evanescent quasiparticle transmission. Furthermore, we
take into account the influence of charge inhomogeneity on the interfacial
barrier potential and calculate the conductance as a function of bias voltage.
Point-contact Andreev reflection (PCAR) spectra often show dip structures,
large zero-bias conductance enhancement, and additional zero-bias conductance
peak. Our results indicate that transport-induced charge inhomogeneity could be
a source of all these anomalous characteristics of the PCAR spectra.Comment: 9 pages, 6 figure
Energy dependent counting statistics in diffusive superconducting tunnel junctions
We present an investigation of the energy dependence of the full charge
counting statistics in diffusive
normal-insulating-normal-insulating-superconducting junctions. It is found that
the current in general is transported via a correlated transfer of pairs of
electrons. Only in the case of strongly asymmetric tunnel barriers or energies
much larger than the Thouless energy is the pair transfer uncorrelated. The
second cumulant, the noise, is found to depend strongly on the applied voltage
and temperature. For a junction resistance dominated by the tunnel barrier to
the normal reservoir, the differential shot noise shows a double peak feature
at voltages of the order of the Thouless energy, a signature of an ensemble
averaged electron-hole resonance.Comment: 8 pages, 5 figure
Predicting the detectability of oscillations in solar-type stars observed by Kepler
Asteroseismology of solar-type stars has an important part to play in the
exoplanet program of the NASA Kepler Mission. Precise and accurate inferences
on the stellar properties that are made possible by the seismic data allow very
tight constraints to be placed on the exoplanetary systems. Here, we outline
how to make an estimate of the detectability of solar-like oscillations in any
given Kepler target, using rough estimates of the temperature and radius, and
the Kepler apparent magnitude.Comment: 21 pages, 6 figures, accepted for publication Astrophysical Journa
- …
