199 research outputs found

    Deep Space Gateway Science Opportunities

    Get PDF
    The NASA Life Sciences Research Capabilities Team (LSRCT) has been discussing deep space research needs for the last two years. NASA's programs conducting life sciences studies - the Human Research Program, Space Biology, Astrobiology, and Planetary Protection - see the Deep Space Gateway (DSG) as affording enormous opportunities to investigate biological organisms in a unique environment that cannot be replicated in Earth-based laboratories or on Low Earth Orbit science platforms. These investigations may provide in many cases the definitive answers to risks associated with exploration and living outside Earth's protective magnetic field. Unlike Low Earth Orbit or terrestrial locations, the Gateway location will be subjected to the true deep space spectrum and influence of both galactic cosmic and solar particle radiation and thus presents an opportunity to investigate their long-term exposure effects. The question of how a community of biological organisms change over time within the harsh environment of space flight outside of the magnetic field protection can be investigated. The biological response to the absence of Earth's geomagnetic field can be studied for the first time. Will organisms change in new and unique ways under these new conditions? This may be specifically true on investigations of microbial communities. The Gateway provides a platform for microbiology experiments both inside, to improve understanding of interactions between microbes and human habitats, and outside, to improve understanding of microbe-hardware interactions exposed to the space environment

    Assessment of Keratitis Damage in an Age Dependent Mouse Model Using Analytical Software

    Get PDF
    Background: Streptococcus pneumoniae (pneumococcus) is a grampositive bacterium that is responsible for diseases such as, otitis media, conjunctivitis, bacterial keratitis, pneumonia, and meningitis. Bacterial keratitis is one of the most common after-effects of trauma to the eye. Some reports have shown the S. pneumoniae spreads through enzymes that are produced to digest the cornea, which in turn can causes blindness. There is a need for more improved measures that can reverse the detrimental effects of the bacteria. The long-term goal of this research is to better understand the complete role of S. pneumoniae and its components in bacterial keratitis to develop next generation therapies to prevent blindness. The purpose of this study is to develop alternative measures to evaluate damage associated with keratitis infection by use of computer applications. Methods: This study analyzed images of the established Keratitis pneumococcal mouse model. The eye images of mice 7-8-week-old and 9-month-old were collected. Additional images were taken on post-infection days one, three, five, and nine, revealing the progression of the infection. Results: The ImageJ Application provided more in depth review to determine the detrimental effects of S. pneumoniae. Through the software, a ā€œColor Thresholdā€ was created on every image to emphasize the area of damage caused by the bacteria. A scatter plot of every image created a map of the particles, and the diameter created a scale demonstrating the impact of keratitis. Data revealed that the most significant increase in infection occurs between Day 1 and 3 post-infection. Conclusions: The study has created a computer model to establish a baseline for the infection process of S. pneumoniae in the traditional mouse model. ImageJ has proven to be a useful tool to analyze the impact of disease on the murine model. Results from this study also provide evidence of the importance of early intervention in ocular disease

    The Impact of Aquatic Based Plyometric Training on Jump Performance: A Critical Review

    Get PDF
    International Journal of Exercise Science 14(6): 815-828, 2021. There is evidence to suggest that aquatic plyometric training (APT) may be an effective and safer alternative to traditional land-based plyometric training (LPT) when training to increase jump performance. The aim of this review was to critically examine the current literature regarding the effects of APT vs. LPT on jump performance in athletic populations. Key terms were employed in five separate databases to complete the current review. Available articles were screened for inclusion and exclusion criteria to determine which studies were deemed eligible for review. Outcome measure in these studies included those assessing lower extremity power and jump performance (i.e., drop jumps, broad jumps, sergeant jumps, repeated countermovement jumps, and vertical jumps). All but one of the studies included in this critical review showed significant improvements in jump performance after LPT and APT interventions. Both LPT and APT groups experienced similar increases in jump performance and lower-body power, pre- to post-test, in the majority of the studies examined in this review. LPT and APT have the ability to improve lower extremity explosive strength and jump performance within athletic populations. Improvements in lower body power may improve overall athletic performance. Observations from this review may be used by sport coaches, strength coaches, and athletes alike to weigh the pros and cons of both forms of plyometric training. Observations from this review may also be used to weigh the pros and cons of APT over LPT in terms of reducing risk of injury

    Accurate Assignments of Excited-State Resonance Raman Spectra: A Benchmark Study Combining Experiment and Theory

    Get PDF
    This is an unofficial translation of an article that appeared in an ACS publication. ACS has not endorsed the content of this translation or the context of its use.Femtosecond stimulated Raman scattering (FSRS) probes the structural dynamics of molecules in electronically excited states by following the evolution of the vibrational spectrum. Interpreting the dynamics requires accurate assignments to connect the vibrational bands with specific nuclear motions of an excited molecule. However, the assignment of FSRS signals is often complicated by mode-specific resonance enhancement effects that are difficult to calculate for molecules in electronically excited states. We present benchmark results for a series of eight aryl-substituted thiophene derivatives to show that calculated off-resonance Raman spectra can be used to assign experimental bands on the basis of a comparison of structurally similar compounds and careful consideration of the resonance condition. Importantly, we show that direct comparison with the off-resonant calculations can lead to incorrect assignments of the experimental spectrum if the resonance condition is neglected. These results highlight the importance of resonance enhancement effects in assigning FSRS spectra

    Relationships between Lower-body Power, Sprint and Change of Direction Speed among Collegiate Basketball Players by Sex

    Get PDF
    International Journal of Exercise Science 15(6): 974-984, 2022. The purpose of this study was to determine if significant relationships exist between absolute and relative lower-body power and selected measures of speed among male and female collegiate basketball players. Archived performance testing data from 29 (male = 14; female = 15) NCAA division II collegiate basketball players were used for this analysis. These measures included lane agility, 10-yard sprint, and shuttle run time (sec). A Pearsonā€™s correlation coefficient was used to determine if significant relationships existed between measures of lower-body power and linear sprint time, change of direction speed (CODS), and shuttle performance. Statistical significance was set a priori at p ā‰¤ 0.05. A significant large correlation was found between absolute power and lane agility (r = 0.54, p = 0.05) among male players. No significant correlations were found between absolute or relative power for 10-yard sprint times, lane agility, or shuttle run performance (p \u3e 0.05). Females showed no significant correlations between relative power and lane agility (r = -0.25, p = 0.37) or 10-yard sprint (r = -0.47, p = 0.08), but did show a significant large correlation (r = -0.64, p = 0.01) between relative power and shuttle run performance. Generating high amounts of relative power is vital in intermittent team sports such as basketball. In particular, this study provided evidence that relative power in female collegiate basketball players is significantly related to shuttle run ability

    A comparison of pneumolysin activity and concentration in vitro and in vivo in a rabbit endophthalmitis model

    Get PDF
    The purpose of this study was to determine whether the in vitro activity and concentration of Streptococcus pneumoniae pneumolysin correlated to the pathogenesis of S. pneumoniae endophthalmitis. Five S. pneumoniae clinical endophthalmitis strains were grown in media to similar optical densities (OD), and extracellular milieu was tested for pneumolysin activity by hemolysis of rabbit red blood cells. Pneumolysin concentration was determined using a sandwich ELISA. Rabbit vitreous was injected with 102 colony-forming units (CFU) of 1 of 2 different strains with low hemolytic activity (n = 10 and 12 for strains 4 and 5, respectively) or 1 of 3 different strains with high hemolytic activity (n = 12 per strain). Pathogenesis of endophthalmitis infection was graded by slit lamp examination (SLE) at 24 hours post-infection. Bacteria were recovered from infected vitreous and quantitated. The SLE scores of eyes infected with strains having high hemolytic activity were significantly higher than the scores of those infected with strains having low hemolytic activity (P < 0.05). Pneumolysin concentration in vitro, however, did not correlate with hemolysis or severity of endophthalmitis. Bacterial concentrations from the vitreous infected with 4 of the strains were not significantly different (P > 0.05). These data suggest that pneumolysin hemolytic activity in vitro directly correlates to the pathogenesis of S. pneumoniae endophthalmitis. The protein concentration of pneumolysin, however, is not a reliable indicator of pneumolysin activity

    Investigating mechanisms of state localization in highly ionized dense plasmas

    Get PDF
    ProducciĆ³n CientĆ­ficaWe present experimental observations of KĪ² emission from highly charged Mg ions at solid density, driven by intense x rays from a free electron laser. The presence of KĪ² emission indicates the n=3 atomic shell is relocalized for high charge states, providing an upper constraint on the depression of the ionization potential. We explore the process of state relocalization in dense plasmas from first principles using finite-temperature density functional theory alongside a wave-function localization metric, and find excellent agreement with experimental results.This work has been supported by the Spanish Ministry of Science and Innovation under Research Grant No. PID2019-108764RB-I0

    Investigating Mechanisms of State Localization in Highly-Ionized Dense Plasmas

    Full text link
    We present the first experimental observation of KĪ²_{\beta} emission from highly charged Mg ions at solid density, driven by intense x-rays from a free electron laser. The presence of KĪ²_{\beta} emission indicates the n=3n=3 atomic shell is relocalized for high charge states, providing an upper constraint on the depression of the ionization potential. We explore the process of state relocalization in dense plasmas from first principles using finite-temperature density functional theory alongside a wavefunction localization metric, and find excellent agreement with experimental results.Comment: 22 pages, 13 figure
    • ā€¦
    corecore