77 research outputs found

    Socio-demographic profile of poisoning in children admitted to a tertiary hospital

    Get PDF
    Background: Childhood poisoning is a significant public health problem and is very important cause of mortality and morbidityin children. The offending substances used vary from place to place. The pattern of poisoning has been changing with new hazardsconstantly appearing due to the introduction of new drugs and chemicals. Childhood poisoning is usually accidental makingpoisoning a preventable problem. Objectives: To determine the socio-demographic and clinical profile and outcome of childhoodpoisoning in a tertiary care hospital. Materials and Methods: This prospective study was done over a period of 2-year in a tertiarycare hospital. We studied children <15 years of age who were admitted to our hospital with a history of poisoning. Children withhistory of food poisoning, snake bite, scorpion sting, and insect bites were excluded from the study. The demographic profile ofpatients, various substances of poisoning, mode of poisoning, and outcome of admitted children with poisoning were studied.Results: Among 200 children admitted with the history of poisoning, 126 (63%) were boys and 74 (37%) were girls. The majorityof the poisoning were accidental in nature and found to be common in the age group of 1-5 years, children from rural areas, and areof lower socio-economic status. Kerosene poisoning was the most common (35%) agent followed by organophosphorus poisoning(11%). 4 children died due to various complications of poisoning. Conclusion: Common household products were found to be themain source of poisoning in younger age groups from rural background, and the majority was accidental in nature. Educationalprograms toward creating awareness among public are necessary to reduce the incidence of poisoning in children

    Meta-analysis cum machine learning approaches address the structure and biogeochemical potential of marine copepod associated bacteriobiomes

    Get PDF
    Copepods are the dominant members of the zooplankton community and the most abundant form of life. It is imperative to obtain insights into the copepod-associated bacteriobiomes (CAB) in order to identify specific bacterial taxa associated within a copepod, and to understand how they vary between different copepods. Analysing the potential genes within the CAB may reveal their intrinsic role in biogeochemical cycles. For this, machine-learning models and PICRUSt2 analysis were deployed to analyse 16S rDNA gene sequences (approximately 16 million reads) of CAB belonging to five different copepod genera viz., Acartia spp., Calanus spp., Centropages sp., Pleuromamma spp., and Temora spp.. Overall, we predict 50 sub-OTUs (s-OTUs) (gradient boosting classifiers) to be important in five copepod genera. Among these, 15 s-OTUs were predicted to be important in Calanus spp. and 20 s-OTUs as important in Pleuromamma spp.. Four bacterial s-OTUs Acinetobacter johnsonii, Phaeobacter, Vibrio shilonii and Piscirickettsiaceae were identified as important s-OTUs in Calanus spp., and the s-OTUs Marinobacter, Alteromonas, Desulfovibrio, Limnobacter, Sphingomonas, Methyloversatilis, Enhydrobacter and Coriobacteriaceae were predicted as important s-OTUs in Pleuromamma spp., for the first time. Our meta-analysis revealed that the CAB of Pleuromamma spp. had a high proportion of potential genes responsible for methanogenesis and nitrogen fixation, whereas the CAB of Temora spp. had a high proportion of potential genes involved in assimilatory sulphate reduction, and cyanocobalamin synthesis. The CAB of Pleuromamma spp. and Temora spp. have potential genes accountable for iron transport

    Rice-Magnaporthe transcriptomics reveals host defense activation induced by red seaweed-biostimulant in rice plants

    Get PDF
    Red seaweed extracts have been shown to trigger the biotic stress tolerance in several crops. However, reports on transcriptional modifications in plants treated with seaweed biostimulant are limited. To understand the specific response of rice to blast disease in seaweed-biostimulant-primed and non-primed plants, transcriptomics of a susceptible rice cultivar IR-64 was carried out at zero and 48 h post inoculation with Magnaporthe oryzae (strain MG-01). A total of 3498 differentially expressed genes (DEGs) were identified; 1116 DEGs were explicitly regulated in pathogen-inoculated treatments. Functional analysis showed that most DEGs were involved in metabolism, transport, signaling, and defense. In a glass house, artificial inoculation of MG-01 on seaweed-primed plants resulted in the restricted spread of the pathogen leading to the confined blast disease lesions, primarily attributed to reactive oxygen species (ROS) accumulation. The DEGs in the primed plants were defense-related transcription factors, kinases, pathogenesis-related genes, peroxidases, and growth-related genes. The beta-D-xylosidase, a putative gene that helps in secondary cell wall reinforcement, was downregulated in non-primed plants, whereas it upregulated in the primed plants indicating its role in the host defense. Additionally, Phenylalanine ammonia-lyase, pathogenesis-related Bet-v-I family protein, chalcone synthase, chitinases, WRKY, AP2/ERF, and MYB families were upregulated in seaweed and challenge inoculated rice plants. Thus, our study shows that priming rice plants with seaweed bio-stimulants resulted in the induction of the defense in rice against blast disease. This phenomenon is contributed to early protection through ROS, protein kinase, accumulation of secondary metabolites, and cell wall strengthening

    Understanding our seas: National Institute of Oceanography, Goa

    Get PDF
    The present article summarizes the research done at the CSIR–National Institute of Oceanography in 2014 in ocean science, resources and technology. Significant research has been conducted on air–sea interactions and coastal circulation, biogeochemistry, biology, marine geophysics, palaeoceanography, marine fishery, gas hydrates and wave energy. Technological advances covered topics like oceanographic tools. Major strides have been made in marine resources research and evaluation

    Understanding our seas: National Institute of Oceanography, Goa

    Get PDF
    The present article summarizes the research done at the CSIR–National Institute of Oceanography in 2014 in ocean science, resources and technology. Significant research has been conducted on air–sea interactions and coastal circulation, biogeochemistry, biology, marine geophysics, palaeoceanography, marine fishery, gas hydrates and wave energy. Technological advances covered topics like oceanographic tools. Major strides have been made in marine resources research and evaluation

    Global disparities in surgeons’ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study

    Get PDF
    : The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSS® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity > 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI

    Enhancing Science Teaching Through Effective Multisensory Integration Approach

    No full text
    Sensory integration takes place in the central nervous system where complex interactions such as co-ordination, attention, arousal levels, autonomic functioning, emotions, memory and higher level cognitive functions are carried out. Sensory integration gets information through the senses, puts it together with prior knowledge, information and memories already stored in the brain to make a meaningful response. Multi-sensory learning, as the name implies, is the process of learning a new subject matter through the use of two or more senses. This may include combining visual, auditory, tactile or kinaesthetic, olfactory and gustatory sensation. By activating brain regions associated with touch, flavour, audition and vision, they indicate a direct relationship between perceptual knowledge and sensory brain mechanisms. The present research study to find out effectiveness of Multisensory Integration Approach to Enhancing Achievement on Science among IX Standard Students reveals that activating appropriate processes through Multisensory Integration Approach plays a vital role in improving achievement in science. Further it is observed that the Multisensory Integration Approach expands the learning schema, since the learner is able to activate appropriate sensory integration. This contributes to meaningful and joyful learning. This facilitates the teacher’s task of enabling the students to apply Multisensory Integration Model on enhancing learning

    Enhancing Science Teaching Through Effective Multisensory Integration Approach

    Get PDF
    28-39Sensory integration takes place in the central nervous system where complex interactions such as co-ordination, attention, arousal levels, autonomic functioning, emotions, memory and higher level cognitive functions are carried out. Sensory integration gets information through the senses, puts it together with prior knowledge, information and memories already stored in the brain to make a meaningful response. Multi-sensory learning, as the name implies, is the process of learning a new subject matter through the use of two or more senses. This may include combining visual, auditory, tactile or kinaesthetic, olfactory and gustatory sensation. By activating brain regions associated with touch, flavour, audition and vision, they indicate a direct relationship between perceptual knowledge and sensory brain mechanisms. The present research study to find out effectiveness of Multisensory Integration Approach to Enhancing Achievement on Science among IX Standard Students reveals that activating appropriate processes through Multisensory Integration Approach plays a vital role in improving achievement in science. Further it is observed that the Multisensory Integration Approach expands the learning schema, since the learner is able to activate appropriate sensory integration. This contributes to meaningful and joyful learning. This facilitates the teacher’s task of enabling the students to apply Multisensory Integration Model on enhancing learning
    corecore