1,302 research outputs found

    Structure of the Vacuum in Deformed Supersymmetric Chiral Models

    Get PDF
    We analyze the vacuum structure of N=1/2 chiral supersymmetric theories in deformed superspace. In particular we study O'Raifeartaigh models with C-deformed superpotentials and canonical and non-canonical deformed Kahler potentials. We find conditions under which the vacuum configurations are affected by the deformations.Comment: 15 pages, minor corrections. Version to appear in JHE

    Quantum Numbers for Excitations of Bose-Einstein Condensates in 1D Optical Lattices

    Full text link
    The excitation spectrum and the band structure of a Bose-Einstein condensate in a periodic potential are investigated. Analyses within full 3D systems, finite 1D systems, and ideal periodic 1D systems are compared. We find two branches of excitations in the spectra of the finite 1D model. The band structures for the first and (part of) the second band are compared between a finite 1D and the fully periodic 1D systems, utilizing a new definition of a effective wavenumber and a phase-slip number. The upper and lower edges of the first gap coincide well between the two cases. The remaining difference is explained by the existence of the two branches due to the finite-size effect.Comment: 5 pages, 9 figure

    Effect of dissipation and measurement on a tunneling system

    Get PDF
    We consider a parametrically driven Kerr medium in which the pumping may be sinusoidally varied. It has been previously found that this system exhibits coherent tunneling between two fixed points which can be either enhanced or suppressed by altering the driving frequency and strength. We numerically investigate the dynamics when damping is included. This is done both by solving a master equation and using the quantum-trajectory method. In the latter case it is also possible to model the result of a continuous heterodyne measurement of the cavity output. The dissipation destroys the coherences which give rise to the tunneling, causing the sinusoidal oscillation of the mean to give way to a stochastic jumping between the fixed points, manifested as a random telegraph signal. In the quantum-trajectory picture we show that the coherences responsible for tunneling are an exponentially decreasing function of the signal-to-noise ratio for heterodyne measurements. However, evidence of both the bare tunneling rate and the driving modified tunneling rate are still apparent in the random telegraph signal

    Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of American 112 (2015): 13184-13189, doi: 10.1073/pnas.1511474112 .Hundreds of organic chemicals are utilized during natural gas extraction via high volume hydraulic fracturing (HVHF). However, it is unclear if these chemicals, injected into deep shale horizons, reach shallow groundwater aquifers and impact local water quality, either from deep underground injection sites or from the surface or shallow subsurface. Here, we report detectable levels of organic compounds in shallow groundwater samples from private residential wells overlying the Marcellus Shale in northeastern Pennsylvania. Analyses of purgeable and extractable organic compounds from 64 groundwater samples revealed trace levels of volatile organic compounds, well below the Environmental Protection Agency’s maximum contaminant levels, and low levels of both gasoline range (GRO; 0-8 ppb) and diesel range organic compounds (DRO; 0-157 ppb). A compound-specific analysis revealed the presence of bis(2-ethylhexyl)phthalate, which is a disclosed HVHF additive, that was notably absent in a representative geogenic water sample and field blanks. Pairing these analyses with 1) inorganic chemical fingerprinting of deep saline groundwater, 2) characteristic noble gas isotopes, and 3) spatial relationships between active shale gas extraction wells and wells with disclosed environmental health and safety (EHS) violations, we differentiate between a chemical signature associated with naturally occurring saline groundwater and a one associated with alternative anthropogenic routes from the surface (e.g., accidental spills or leaks). The data support a transport mechanism of DRO to groundwater via accidental release of fracturing fluid chemicals derived from the surface rather than subsurface flow of these fluids from the underlying shale formation.The authors thank Duke University’s Pratt School of Engineering and the National Science Foundation’s CBET Grant Number 1336702 and NSF EAGER (EAR-1249255) for financial support.2016-04-1

    Ionization via Chaos Assisted Tunneling

    Full text link
    A simple example of quantum transport in a classically chaotic system is studied. It consists in a single state lying on a regular island (a stable primary resonance island) which may tunnel into a chaotic sea and further escape to infinity via chaotic diffusion. The specific system is realistic : it is the hydrogen atom exposed to either linearly or circularly polarized microwaves. We show that the combination of tunneling followed by chaotic diffusion leads to peculiar statistical fluctuation properties of the energy and the ionization rate, especially to enhanced fluctuations compared to the purely chaotic case. An appropriate random matrix model, whose predictions are analytically derived, describes accurately these statistical properties.Comment: 30 pages, 11 figures, RevTeX and postscript, Physical Review E in pres

    Non-human TRIM5 variants enhance recognition of HIV-1-infected cells by CD8+ T cells

    Get PDF
    Tripartite motif-containing protein 5 (TRIM5) restricts human immunodeficiency virus type-1 (HIV-1) in a species-specific manner by uncoating viral particles while activating early innate responses. Although the contribution of TRIM5 proteins to cellular immunity has not yet been studied, their interactions with the incoming viral capsid and the cellular proteasome led us to hypothesize a role for them. Here, we investigate whether the expression of two non-human TRIM5 orthologs, rhesus TRIM5α (RhT5) and TRIM-cyclophilin A (TCyp), both of which are potent restrictors of HIV-1, could enhance immune recognition of infected cells by CD8+ T cells. We illustrate how TRIM5 restriction improves CD8+ T cell-mediated HIV-1 inhibition. Moreover, when TRIM5 activity was blocked by the non-immunosuppressive analog of cyclosporin A, SmBz-CsA, we found a significant reduction in CD107a/MIP1β expression in HIV-1-specific CD8+ T cells. This finding underscores the direct link between TRIM5 restriction and activation of CD8+ T-cell responses. Interestingly, cells expressing RhT5 induced stronger CD8+ T-cell responses through the specific recognition of the HIV-1 capsid by the immune system. The underlying mechanism of this process may involve TRIM5-specific capsid recruitment to cellular proteasomes and increase peptide availability for loading and presentation of HLA class I antigens. In summary, we identified a novel function for non-human TRIM5 variants in cellular immunity. We hypothesise that TRIM5 can couple innate viral sensing and CD8+ T-cell activation to increase species barriers against retrovirus infection. IMPORTANCE: New therapeutics to tackle HIV-1 infection should aim to combine rapid innate viral sensing and cellular immune recognition. Such strategies could prevent seeding of the viral reservoir and the immune damage that occurs during acute infection. The non-human TRIM5 variants, rhesus TRIM5α (RhT5) and TRIM-cyclophilin A (TCyp), are attractive candidates owing to their potency in sensing HIV-1 and blocking its activity. Here, we show that expression of RhT5 and TCyp in HIV-1-infected cells improves CD8+ T cell-mediated inhibition through the direct activation of HIV-1-specific CD8+ T-cell responses. We found that the potency in CD8+ activation was stronger for RhT5 variants and capsid-specific CD8+ T-cells in a mechanism that relies on TRIM5-dependent particle recruitment to cellular proteasomes. This novel mechanism couples innate viral sensing with cellular immunity in a single protein and could be exploited to develop innovative therapeutics for control of HIV-1 infection

    A multistep process for the dispersal of a Y chromosomal lineage in the Mediterranean area

    Get PDF
    Tn this work we focus on a microsatellite-defined Y-chromosomal lineage (network 1.2) identified by us and reported in previous studies, whose geographic distribution and antiquity appear to be compatible with the Neolithic spread of farmers. Here, we set network 1.2 in the Y-chromosomal phylogenetic tree, date it with respect to other lineages associated with the same movements by other authors, examine its diversity by means of tri- and tetranucleotide loci and discuss the implications hi reconstructing the spread of this group of chromosomes in the Mediterranean area. Our results define a tripartite phylogeny wit-bin HG 9 (Rosser et al. 2000) with the deepest branching defined by alleles T (Haplogroup Eu 10) or G (Haplogroup Eu9) at M172 (Semino et al. 2000), and a subsequent branching within Eu9 defined by network 1.2. Population distributions of HG 9 and network 1.2 show that their occurrence in the surveyed area is not due to the spread of people from a single parental population but, rather, to a process punctuated by at least two phases. Our data identify the wide area of the Balkans, Aegean and Anatolia as the possible homeland harbouring the largest variation within network 1.2. The use of recently proposed tests based on the stepwise mutation model suggests that its spread was associated to a population expansion, xvith a high rate of male gene flow in the Turkish Greek area

    Macrophages Are Required for Dendritic Cell Uptake of Respiratory Syncytial Virus from an Infected Epithelium

    Get PDF
    We have previously shown that the respiratory syncytial virus [RSV] can productively infect monocyte derived dendritic cells [MoDC] and remain dormant within the same cells for prolonged periods. It is therefore possible that infected dendritic cells act as a reservoir within the airways of individuals between annual epidemics. In the present study we explored the possibility that sub-epithelial DCs can be infected with RSV from differentiated bronchial epithelium and that in turn RSV from DCs can infect the epithelium. A dual co-culture model was established in which a differentiated primary airway epithelium on an Air Liquid Interface (ALI) was cultured on a transwell insert and MoDCs were subsequently added to the basolateral membrane of the insert. Further experiments were undertaken using a triple co-culture model in which in which macrophages were added to the apical surface of the differentiated epithelium. A modified RSV [rr-RSV] expressing a red fluorescent protein marker of replication was used to infect either the MoDCs or the differentiated epithelium and infection of the reciprocal cell type was assessed using confocal microscopy. Our data shows that primary epithelium became infected when rr-RSV infected MoDCs were introduced onto the basal surface of the transwell insert. MoDCs located beneath the epithelium did not become infected with virus from infected epithelial cells in the dual co-culture model. However when macrophages were present on the apical surface of the primary epithelium infection of the basal MoDCs occurred. Our data suggests that RSV infected dendritic cells readily transmit infection to epithelial cells even when they are located beneath the basal layer. However macrophages appear to be necessary for the transmission of infection from epithelial cells to basal dendritic cells

    Non-equilibrium memory effects: granular fluids and beyond

    Full text link
    In this perspective paper, we look into memory effects in out-of-equilibrium systems. To be concrete, we exemplify memory effects with the paradigmatic case of granular fluids, although extensions to other contexts such as molecular fluids with non-linear drag are also considered. The focus is put on two archetypal memory effects: the Kovacs and Mpemba effects. In brief, the first is related to imperfectly reaching a steady state -- either equilibrium or non-equilibrium, whereas the second is related to reaching a steady state faster despite starting further. Connections to optimal control theory thus naturally emerge and are briefly discussed.Comment: Perspective paper for EPL, 7 pages, 6 figure
    corecore