1,356 research outputs found

    Probing the time-variation of the fine-structure constant: Results based on Si IV doublets from a UVES sample

    Get PDF
    We report a new constraint on the variation of the fine-structure constant based on the analysis of 15 Si IV doublets selected from a ESO-UVES sample. We find \Delta\alpha/\alpha = (+0.15+/-0.43) x 10^-5 over a redshift range of 1.59< z < 2.92 which is consistent with no variation in \alpha. This result represents a factor of three improvement on the constraint on \Delta\alpha/\alpha based on Si IV doublets compared to the published results in the literature. The alkali doublet method used here avoids the implicit assumptions used in the many-multiplet method that chemical and ionization inhomogeneities are negligible and isotopic abundances are close to the terrestrial value.Comment: 12 Pages, 7 figures. Accepted for publication in A&A. In addition to minor corrections an appendix is added in this revised versio

    Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars

    Get PDF
    Most of the successful physical theories rely on the constancy of few fundamental quantities (such as the speed of light, cc, the fine-structure constant, \alpha, the proton to electron mass ratio, \mu, etc), and constraining the possible time variations of these fundamental quantities is an important step toward a complete physical theory. Time variation of \alpha can be accurately probed using absorption lines seen in the spectra of distant quasars. Here, we present the results of a detailed many-multiplet analysis performed on a new sample of Mg II systems observed in high quality quasar spectra obtained using the Very Large Telescope. The weighted mean value of the variation in \alpha derived from our analysis over the redshift range 0.4<z<2.3 is \Delta\alpha/\alpha = (-0.06+/-0.06) x 10^{-5}. The median redshift of our sample (z=1.55) corresponds to a look-back time of 9.7 Gyr in the most favored cosmological model today. This gives a 3\sigma limit, -2.5 x 10^{-16} yr^-1 <(\Delta\alpha/\alpha\Delta t) <+1.2x10^{-16} yr^-1, for the time variation of \alpha, that forms the strongest constraint obtained based on high redshift quasar absorption line systems.Comment: uses revtex, 4 pages 3 figures. Accepted for publication in Physical Review Letter

    The Relationship Between Galaxies and Low Redshift Weak Lyman alpha Absorbers in the Directions of H1821+643 and PG1116+215

    Get PDF
    To study the nature of low z Lya absorbers in the spectra of QSOs, we have obtained high signal-to-noise UV spectra of H 1821+643 (z = 0.297) and PG 1116+215 (z = 0.177) with the GHRS on the HST. The spectra have minimum S/N of 70-100 and 3 sigma limiting equivalent widths of 50-75 mA. We detect 26 Lya lines with Wr > 50 mA toward H1821+643 and 13 toward PG1116+215, which implies a density of 102+/-16 lines per unit redshift. The two-point correlation function shows marginal evidence of clustering on ~500 km/s scales, but only if the weakest lines are excluded. We have also used the WIYN Observatory to measure galaxy redshifts in the ~1 degree fields centered on each QSO. We find 17 galaxy-absorber pairs within projected distances of 1 Mpc with velocity separations of 350 km/s or less. Monte Carlo simulations show that if the Lya lines are randomly distributed, the probability of observing this many close pairs is 3.6e-5. We find that all galaxies with projected distances of 600 kpc or less have associated Lya absorbers within 1000 km/s, and the majority of these galaxies have absorbers within 350 km/s. We also find that the Lya equivalent width is anticorrelated with the projected distance of the nearest galaxy out to at least 600 kpc, but this should be interpreted cautiously because there are potential selection biases. Statistical tests using the entire sample also indicate that the absorbers are not randomly distributed. We discuss the nature of the Lya absorbers in light of the new data.Comment: Accepted for publication in ApJ. 17 pages plus 11 tables and 17 figure

    The Closest Damped Lyman Alpha System

    Full text link
    A difficulty of studying damped Lyman alpha systems is that they are distant, so one knows little about the interstellar medium of the galaxy. Here we report upon a damped Lyman alpha system in the nearby galaxy NGC 4203, which is so close (v_helio = 1117 km/s) and bright (B_o = 11.62) that its HI disk has been mapped. The absorption lines are detected against Ton 1480, which lies only 1.9' (12 h_50 kpc) from the center of NGC 4203. Observations were obtained with the Faint Object Spectrograph on HST (G270H grating) over the 2222-3277 Angstrom region with 200 km/s resolution. Low ionization lines of Fe, Mn, and Mg were detected, leading to metallicities of -2.29, -2.4, which are typical of other damped Lyman alpha systems, but well below the stellar metallicity of this type of galaxy. Most notably, the velocity of the lines is 1160 +- 10 km/s, which is identical to the HI rotational velocity of 1170 km/s at that location in NGC 4203, supporting the view that these absorption line systems can be associated with the rotating disks of galaxies. In addition, the line widths of the Mg lines give an upper limit to the velocity dispersion of 167 km/s, to the 99% confidence level.Comment: 4 pages LaTeX, including 1 figure and 1 table, uses emulateapj.sty. Accepted for publication by Astrophysical Journal Letter

    The AGN Outflow in the HDFS Target QSO J2233-606 from a High-Resolution VLT/UVES Spectrum

    Full text link
    We present a detailed analysis of the intrinsic UV absorption in the central HDFS target QSO J2233-606, based on a high-resolution, high S/N (~25 -- 50) spectrum obtained with VLT/UVES. This spectrum samples the cluster of intrinsic absorption systems outflowing from the AGN at radial velocities v ~ -5000 -- -3800 km/s in the key far-UV diagnostic lines - the lithium-like CNO doublets and H I Lyman series. We fit the absorption troughs using a global model of all detected lines to solve for the independent velocity-dependent covering factors of the continuum and emission-line sources and ionic column densities. This reveals increasing covering factors in components with greater outflow velocity. Narrow substructure is revealed in the optical depth profiles, suggesting the relatively broad absorption is comprised of a series of multiple components. We perform velocity-dependent photoionization modeling, which allows a full solution to the C, N, and O abundances, as well as the velocity resolved ionization parameter and total column density. The absorbers are found to have supersolar abundances, with [C/H] and [O/H] ~0.5 -- 0.9, and [N/H] ~ 1.1 -- 1.3, consistent with enhanced nitrogen production expected from secondary nucleosynthesis processes. Independent fits to each kinematic component give consistent results for the abundances. The lowest-ionization material in each of the strong absorbers is modeled with similar ionization parameters. Components of higher-ionization (indicated by stronger O VI relative to C IV and N V) are present at velocities just redward of each low-ionization absorber. We explore the implications of these results for the kinematic-geometric-ionization structure of the outflow.Comment: 12 pages, 10 figures, emulateapj, accepted for publication in Ap

    Ionizing radiation fluctuations and large-scale structure in the Lyman-alpha forest

    Full text link
    We investigate the large-scale inhomogeneities of the hydrogen ionizing radiation field in the Universe at redshift z=3. Using a raytracing algorithm, we simulate a model in which quasars are the dominant sources of radiation. We make use of large scale N-body simulations of a LambdaCDM universe, and include such effects as finite quasar lifetimes and output on the lightcone, which affects the shape of quasar light echoes. We create Lya forest spectra that would be generated in the presence of such a fluctuating radiation field, finding that the power spectrum of the Lya forest can be suppressed by as much as 15 % for modes with k=0.05-1 Mpc/h. This relatively small effect may have consequences for high precision measurements of the Lya power spectrum on larger scales than have yet been published. We also investigate another radiation field probe, the cross-correlation of quasar positions and the Lya forest. For both quasar lifetimes which we simulate (10^7 yr and 10^8 yr), we expect to see a strong decrease in the Lya absorption close to other quasars (the ``foreground'' proximity effect). We then use data from the Sloan Digital Sky Survey First Data Release to make an observational determination of this statistic. We find no sign of our predicted lack of absorption, but instead increased absorption close to quasars. If the bursts of radiation from quasars last on average < 10^6 yr, then we would not expect to be able to see the foreground effect. However, the strength of the absorption itself seems to be indicative of rare objects, and hence much longer total times of emission per quasar. Variability of quasars in bursts with timescales > 10^4yr and < 10^6 yr could reconcile these two facts.Comment: Submitted to ApJ, 21 pages, 17 postscript figures, emulateapj.st

    X-ray Insights into the Nature of Quasars with Redshifted Broad Absorption Lines

    Full text link
    We present ChandraChandra observations of seven broad absorption line (BAL) quasars at z=0.863z=0.863-2.516 with redshifted BAL troughs (RSBALs). Five of our seven targets were detected by ChandraChandra in 4-13 ks exposures with ACIS-S. The αox\alpha_{\rm ox} values, Δαox\Delta\alpha_{\rm ox} values, and spectral energy distributions of our targets demonstrate they are all X-ray weak relative to expectations for non-BAL quasars, and the degree of X-ray weakness is consistent with that of appropriately-matched BAL quasars generally. Furthermore, our five detected targets show evidence for hard X-ray spectral shapes with a stacked effective power-law photon index of Γeff=0.50.4+0.5\Gamma_{\rm eff}=0.5^{+0.5}_{-0.4}. These findings support the presence of heavy X-ray absorption (NH2×1023N_{\rm H}\approx 2 \times 10^{23} cm2^{-2}) in RSBAL quasars, likely by the shielding gas found to be common in BAL quasars more generally. We use these X-ray measurements to assess models for the nature of RSBAL quasars, finding that a rotationally-dominated outflow model is favored while an infall model also remains plausible with some stipulations. The X-ray data disfavor a binary quasar model for RSBAL quasars in general.Comment: 11 pages, 5 figures, and 3 table

    The Statistics of Density Peaks and the Column Density Distribution of the Lyman-Alpha Forest

    Get PDF
    We develop a method to calculate the column density distribution of the Lyman-alpha forest for column densities in the range 1012.51014.5cm210^{12.5} - 10^{14.5} cm^{-2}. The Zel'dovich approximation, with appropriate smoothing, is used to compute the density and peculiar velocity fields. The effect of the latter on absorption profiles is discussed and it is shown to have little effect on the column density distribution. An approximation is introduced in which the column density distribution is related to a statistic of density peaks (involving its height and first and second derivatives along the line of sight) in real space. We show that the slope of the column density distribution is determined by the temperature-density relation as well as the power spectrum on scales 2hMpc1<k<20hMpc12 h Mpc^{-1} < k < 20 h Mpc^{-1}. An expression relating the three is given. We find very good agreement between the column density distribution obtained by applying the Voigt-profile-fitting technique to the output of a full hydrodynamic simulation and that obtained using our approximate method for a test model. This formalism then is applied to study a group of CDM as well as CHDM models. We show that the amplitude of the column density distribution depends on the combination of parameters (Ωbh2)2T00.7JHI1(\Omega_b h^2)^2 T_0^{-0.7} J_{HI}^{-1}, which is not well-constrained by independent observations. The slope of the distribution, on the other hand, can be used to distinguish between different models: those with a smaller amplitude and a steeper slope of the power spectrum on small scales give rise to steeper distributions, for the range of column densities we study. Comparison with high resolution Keck data is made.Comment: match accepted version; discussion added: the effect of the shape of the power spectrum on the slope of the column density distributio

    A new measurement of zinc metallicity in a DLA at z=3.35

    Get PDF
    We present chemical abundance measurements in the z_abs=3.35045 Damped Lyman-alpha (DLA) system observed in the UVES spectrum of the BAL quasar BR 1117-1329. We measure a neutral hydrogen column density N(HI)=6.9+/-1.7*10^{20} atoms/cm2 and derive mean abundances relative to solar: [Si/H] = -1.26+/-0.13, [Fe/H]=-1.51+/-0.13, [Ni/H]=-1.57+/-0.13, [Cr/H]=-1.36+/-0.13, [Zn/H]=-1.18+/-0.13, [Al/H]>-1.25, [O/H]>-1.25 and [N/H]3. The iron to zinc and chromium to zinc ratios, [Fe/Zn]=-0.33+/-0.05 and [Cr/Zn]=-0.18+/-0.05 demonstrate that the absorber has a low dust content. The nitrogen ratio [N/Si]<-0.98 suggests that the ``secondary'' N production process is taking place in this DLA. Finally, this absorber does not seem to present a convincing alpha-enhancement as shown by the alpha over Fe-peak element ratios: [Si/Fe]=0.25+/-0.06, [Si/Cr]=0.10+/-0.06 and [Si/Zn]=-0.08+/-0.06

    Cosmological Constraints on a Dynamical Electron Mass

    Full text link
    Motivated by recent astrophysical observations of quasar absorption systems, we formulate a simple theory where the electron to proton mass ratio μ=me/mp\mu =m_{e}/m_{p} is allowed to vary in space-time. In such a minimal theory only the electron mass varies, with α\alpha and mpm_{p} kept constant. We find that changes in μ\mu will be driven by the electronic energy density after the electron mass threshold is crossed. Particle production in this scenario is negligible. The cosmological constraints imposed by recent astronomical observations are very weak, due to the low mass density in electrons. Unlike in similar theories for spacetime variation of the fine structure constant, the observational constraints on variations in μ\mu imposed by the weak equivalence principle are much more stringent constraints than those from quasar spectra. Any time-variation in the electron-proton mass ratio must be less than one part in 10910^{9}since redshifts z1.z\approx 1.This is more than one thousand times smaller than current spectroscopic sensitivities can achieve. Astronomically observable variations in the electron-proton must therefore arise directly from effects induced by varying fine structure 'constant' or by processes associated with internal proton structure. We also place a new upper bound of 2×1082\times 10^{-8} on any large-scale spatial variation of μ\mu that is compatible with the isotropy of the microwave background radiation.Comment: New bounds from weak equivalence principle experiments added, conclusions modifie
    corecore