126 research outputs found
Clinical utility of chromosomal microarray analysis in invasive prenatal diagnosis
Novel methodologies for detection of chromosomal abnormalities have been made available in the recent years but their clinical utility in prenatal settings is still unknown. We have conducted a comparative study of currently available methodologies for detection of chromosomal abnormalities after invasive prenatal sampling. A multicentric collection of a 1-year series of fetal samples with indication for prenatal invasive sampling was simultaneously evaluated using three screening methodologies: (1) karyotype and quantitative fluorescent polymerase chain reaction (QF-PCR), (2) two panels of multiplex ligation-dependent probe amplification (MLPA), and (3) chromosomal microarray-based analysis (CMA) with a targeted BAC microarray. A total of 900 pregnant women provided informed consent to participate (94% acceptance rate). Technical performance was excellent for karyotype, QF-PCR, and CMA (~1% failure rate), but relatively poor for MLPA (10% failure). Mean turn-around time (TAT) was 7 days for CMA or MLPA, 25 for karyotype, and two for QF-PCR, with similar combined costs for the different approaches. A total of 57 clinically significant chromosomal aberrations were found (6.3%), with CMA yielding the highest detection rate (32% above other methods). The identification of variants of uncertain clinical significance by CMA (17, 1.9%) tripled that of karyotype and MLPA, but most alterations could be classified as likely benign after proving they all were inherited. High acceptability, significantly higher detection rate and lower TAT, could justify the higher cost of CMA and favor targeted CMA as the best method for detection of chromosomal abnormalities in at-risk pregnancies after invasive prenatal sampling
Angiogenesis in a human neuroblastoma xenograft model: mechanisms and inhibition by tumour-derived interferon-γ
Tumour progression in neuroblastoma (NB) patients correlates with high vascular index. We have previously shown that the ACN NB cell line is tumorigenic and angiogenic in immunodeficient mice, and that interferon-γ (IFN-γ) gene transfer dampens ACN tumorigenicity. As IFN-γ represses lymphocyte-induced tumour angiogenesis in various murine models and inhibits proliferation and migration of human endothelial cells, we have investigated the antiangiogenic activity of tumour-derived IFN-γ and the underlying mechanism(s). In addition, we characterised the tumour vasculature of the ACN xenografts, using the chick embryo chorioallantoic membrane assay. We show that the ACN/IFN-γ xenografts had a lower microvessel density and less in vivo angiogenic potential than the vector-transfected ACN/neo. The vascular channels of both xenografts were formed by a mixed endothelial cell population of murine and human origin, as assessed by the FICTION (fluorescence immunophenotyping and interphase cytogenetics) technique. With respect to ACN/neo, the ACN/IFN-γ xenografts showed more terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling-positive human and murine endothelial cells, suggesting that inhibition of angiogenesis by IFN-γ was dependent on the induction of apoptosis, likely mediated by nitric oxide. Once the dual origin of tumour vasculature is confirmed in NB patients, the xenograft model described here will prove useful in testing the efficacy of different antiangiogenic compounds
IP-10-Mediated T Cell Homing Promotes Cerebral Inflammation over Splenic Immunity to Malaria Infection
Plasmodium falciparum malaria causes 660 million clinical cases with over 2 million deaths each year. Acquired host immunity limits the clinical impact of malaria infection and provides protection against parasite replication. Experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to severe disease induction. In both humans and mice, the spleen is a crucial organ involved in blood stage malaria clearance, while organ-specific disease appears to be associated with sequestration of parasitized erythrocytes in vascular beds and subsequent recruitment of inflammatory leukocytes. Using a rodent model of cerebral malaria, we have previously found that the majority of T lymphocytes in intravascular infiltrates of cerebral malaria-affected mice express the chemokine receptor CXCR3. Here we investigated the effect of IP-10 blockade in the development of experimental cerebral malaria and the induction of splenic anti-parasite immunity. We found that specific neutralization of IP-10 over the course of infection and genetic deletion of this chemokine in knockout mice reduces cerebral intravascular inflammation and is sufficient to protect P. berghei ANKA-infected mice from fatality. Furthermore, our results demonstrate that lack of IP-10 during infection significantly reduces peripheral parasitemia. The increased resistance to infection observed in the absence of IP-10-mediated cell trafficking was associated with retention and subsequent expansion of parasite-specific T cells in spleens of infected animals, which appears to be advantageous for the control of parasite burden. Thus, our results demonstrate that modulating homing of cellular immune responses to malaria is critical for reaching a balance between protective immunity and immunopathogenesis
Rapid prenatal diagnosis of aneuploidy by quantitative fluorescent PCR on fetal samples from mothers at high risk for chromosome disorders
Monopolar Thermocoagulation of the Major Vessel in an Acardiac Twin - Monopolare Koagulation des Hauptgefäßes eines Acardius-Acranius -
Multi-component, physical activity and dietary interventions for primary prevention of dementia
Detection of Parental Origin and Cell Stage Errors of a Double Nondisjunction in a Fetus by QF-PCR
- …
